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Abstract

In this paper, we address the problem of the existence of supercon-
vergence points of approximate solutions, obtained from the Generalized
Finite Element Method (GFEM), of a Neumann elliptic boundary value
problem. GFEM is a Galerkin method that uses non-polynomial shape
functions, and was developed in [4, 5, 24]. In particular, we show that the
superconvergence points for the gradient of the approximate are zeros of
certain systems of non-linear equations that do not depend on the solution
of the boundary value problem. For approximate solutions with second
derivatives, we have also characterized the superconvergence points of the
second derivatives of the approximate solution as the roots of certain sys-
tems of non-linear equations. We note that it is easy to construct smooth
generalized finite element approximation.
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1 Introduction

The superconvergence in the finite element method (FEM) is a phenomenon,
where the order of convergence of the finite element error, at certain special
points in an element, is higher than the order of convergence of the maximum of
the finite element error over that element. These special points are called natural
superconvergence points. To the best of our knowledge, this phenomenon was
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first addressed in [26], and the term superconvergence was first used in [17].
Superconvergence has been extensively studied ([2, 11, 18, 22, 27, 28, 33, 34, 36,
37] to name a few) and there are more than 1000 papers available on the subject.
An extensive bibliography (before 1998) on superconvergence is available in
[20], where as many references on 3-dimensional problems can be found in [19].
Moreover, there have been several books written on superconvergence in the
context of the finite element method, e.g., [1, 6, 13, 14, 23, 35, 38].

Typically, superconvergence in the FEM has been studied for triangular
meshes, as well as for quadrilateral meshes with tensor-product elements, but
rarely for serendipity elements. Moreover, the mesh is required to have some
local regularity, e.g., elements are essentially translation invariant. Also, most
of these studies are confined within the interior of the underlying domain, and
only a few address the issue of superconvergence up to the boundary.

Later, a systematic approach was introduced in the analysis of superconver-
gence in [9, 10], in the context of the finite element method. This analysis allows
more general meshes, where the elements could be grouped into translation in-
variant “cells” (in contrast to elements being translation invariant). The cells
could contain arbitrary number of elements of different types. It was shown in
these studies that the existence of natural superconvergence points was equiv-
alent to the existence of roots of a system of polynomial equations. Moreover,
the superconvergence points are obtained from these roots, which (the roots)
are computed numerically. In special situations, the system of equations can be
written explicitly and roots can be computed analytically, as shown in [36, 37].
In the context of finite element approximations of solutions of the Poisson’s
equation and the Laplace equation, superconvergence was studied in [10] for
four different types of triangular meshes, as shown in Figure 1.1, as well as for
square mesh with tensor-product, intermediate, and serendipity elements.

(a) (b) (c) (d) 

Figure 1.1: (a) Regular pattern; (b) Chevron pattern; (c) Union Jack

pattern; (d) Cris-cross pattern.

We state some of these results (from [9, 10]; see also page 354 of [6]) in
the context of approximation of the solution of the Poisson equation. It was
shown that for triangular meshes, there are no natural superconvergence points
for a mesh (a) with regular pattern when p > 2 and even; (b) with Chevron
pattern when p is even; (c) with Union Jack pattern for any p. Also, for a
square mesh with serendipity elements, it was shown that (a) there are 4 natural
superconvergence points and a superconvergence line for p = 3; (b) there are
no natural superconvergence points when p ≥ 4 and is even, where as, there
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are 3 such points when p ≥ 5 and is odd. The coordinates of all these points
can be found in [10]. These results illustrate the intrinsic complexity of the
superconvergence phenomenon, and they indicate that the approach is quite
general to analyze this complexity. In [8], the study of superconvergence was
extended to the mesh cells near the boundary of the domain. This approach
was also used in [7, 8] to study the effectiveness of various a-posteriori error
estimators.

In this paper, we will address the problem of superconvergence in the context
of Generalized Finite Element Method (GFEM). This method was introduced
in [4] and later developed and elaborated in [5, 24]. It is a Galerkin method
that uses a mesh only minimally, and allows the use of non-polynomial shape
functions. We will follow the approach of [10] in the analysis of superconvergence
presented in this paper. We will address the superconvergence in GFEM only
in the interior of the underlying domain.

The main results of this paper are Theorems 4.1 and 4.2 given in Section
4. Theorem 4.1 shows that the superconvergence points can be obtained by
finding the zeros of a system of equations that does not depend on the exact
solution of the boundary value problem. Theorem 4.2 addresses the supercon-
vergence points for the second derivatives of the generalized finite element error.
We mention that GFEM allows smooth approximation, in particular a C2 ap-
proximation, which in turn allows us to address the superconvergence of second
derivatives of the error.

We briefly describe the organization of this paper. In Section 2, we describe
the GFEM and review the main approximation result. In Section 3, we discuss
the so called interior estimates, which is crucial for the superconvergence analy-
sis. In Section 4, we present the main results of this paper, namely, Theorems
4.1 and 4.2. We present an example in Section 5 that illuminates the results
obtained in Section 4.

2 Generalized Finite Element Methods

In this section, we briefly describe the GFEM in the context of the approxima-
tion of the solution of a linear Neumann boundary value problem.

Let Ω ⊂ R2 be a domain with piecewise smooth boundary ∂Ω. We consider
the Neumann problem 



4u = f, on Ω,

∂u

∂n
= g, on ∂Ω,

(2.1)

where ∫

Ω

f dx +
∫

∂Ω

g ds = 0. (2.2)

We now give the standard variational formulation of the above problem. Let

B(u, v) =
∫

Ω

[
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

]
dx dy
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and
F (v) =

∫

Ω

fv dx +
∫

∂Ω

gv ds,

where we assume f ∈ L2(Ω) and g ∈ L2(∂Ω). We will often use the notation

BM (u, v) =
∫

M

[
∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

]
dx dy, (2.3)

where M ⊂ Ω. The weak formulation of (2.1) reads,
{

Find u ∈ H1(Ω) satisfying

B(u, v) = F (v) for all v ∈ H1(Ω).
(2.4)

The above problem is uniquely solvable up to a constant; we assume
∫

Ω

u dx = 0,

which ensures a unique solution of (2.4).
The GFEM to approximate the solution of (2.4) is a Galerkin method where

the construction of trial and test spaces depend on a (i) partition of unity (PU),
and (ii) local approximating spaces.

(i) For 0 < h ≤ 1, a parameter, let {ωh
j }N

j=1 be convex sub-domains of Ω
with N = N(h) such that dh

j ≡ diam(ωh
j ) ≤ 2h for j = 1, 2, . . . , N . We assume

that for each value of h,
N(h)⋃

j=1

ωh
j = Ω, (2.5)

and that any x ∈ Ω belongs to at most κ of the sets ωh
j , where κ is independent

of h. The sub-domains ωh
j are called patches. Clearly, {ωh

j }N
j=1 is an open cover

of Ω. Let {φh
j }N

j=1 be a family of C2 functions defined on Ω satisfying

φh
j (x, y) = 0, for (x, y) ∈ Ω \ωh

j , 1 ≤ j ≤ N(h), (2.6)
N(h)∑

j=1

φh
j (x, y) = 1, for (x, y) ∈ Ω, (2.7)

max
(x,y)∈Ω

|φh
j (x, y)| ≤ C1, for 1 ≤ j ≤ N(h), and (2.8)

max
(x,y)∈Ω

|Dαφh
j (x, y)| ≤ C2

| dh
j ||α|

, for |α| ≤ 2 and 1 ≤ j ≤ N(h) (2.9)

where α is a multi-index and constants C1, C2 are independent of h. It is clear
from (2.7) that {φh

j }N
j=1 form a partition of unity.

(ii) To each patch ωh
j , we associate an mj-dimensional space V h

j of functions,
defined on ω̄h

j , given by

V h
j =

{
ξh
j : ξh

j =
mj∑

i=1

bh
ijξ

h
ji, bh

ij ∈ R, ξh
ji ∈ H1(ωh

j ) ∩ C(ω̄h
j )

}
, (2.10)
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and we assume that V h
j contains constant functions. The space V h

j is called a
local approximating space. In the rest of this paper, we will suppress the h in
ωh

j , dh
j , N(h), φh

j , V h
j , ξh

j , and ξh
ji, and refer to them as ωj , dj , φj , N, Vj , ξj , and

ξji respectively for notational clarity and convenience, with the understanding
that they depend on h.

The trial and test spaces in GFEM is given by

SGFEM =



ψ =

N∑

j=1

φjξj ; where ξj ∈ Vj





= span {ηji = φjξji; 1 ≤ i ≤ mj and 1 ≤ j ≤ N} . (2.11)

The functions {ηji} are the shape functions of SGFEM . Finally, the GFEM to
approximate the solution of (2.4) is given by





Find uGFEM ∈ SGFEM satisfying
∫
Ω

uGFEM = 0,

B(uGFEM , v) = F (v) for all v ∈ SGFEM .

(2.12)

This problem has a unique solution and is equivalent to a system of linear
algebraic equations. Specifically, if we write

uGFEM =
N∑

j=1

mj∑

i=1

cjiηji,

then (2.12) yields the linear system





N∑

j=1

mj∑

i=1

cji

∫

ωj

ηji = 0

N∑

j=1

mj∑

i=1

B(ηlk, ηji)cji = F (ηlk), 1 ≤ k ≤ ml, 1 ≤ l ≤ N.

(2.13)

We note that the shape functions {ηji} could be linearly dependent, and thus
the dimension of the null space of the matrix in (2.13) could be greater than
zero. In this case, the system (2.13) does not have a unique solution. However,
uGFEM is unique, i.e., if {c(1)

ji } and {c(2)
ji } are two solutions of (2.13), then

uGFEM =
N∑

j=1

mj∑

i=1

c
(1)
ji ηji =

N∑

j=1

mj∑

i=1

c
(2)
ji ηji.

For examples of linearly dependent shape functions in GFEM, see [3]. In this
paper, we will use a particular SGFEM , which will have linearly independent
shape functions.
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We now present two results on approximation properties of SGFEM , which
in turn give an error estimate for ‖u− uGFEM‖H1(Ω). Suppose u ∈ H1(Ω) can
be accurately approximated on ωj by a function ξu

j ∈ Vj ; specifically, suppose

‖u− ξu
j ‖2L2(ωj)

≤ ε21(j)

and
|u− ξu

j |2H1(ωj)
≤ ε22(j).

Define

ξu =
N∑

j=1

φjξ
u
j ∈ SGFEM

Then we have the following two results ([5, 24]).

Theorem 2.1 Suppose u ∈ H1(Ω). Then

‖u− ξu‖L2(Ω) ≤ C1κ
1/2




N∑

j=1

ε21(j)




1/2

and

|u− ξu|H1(Ω) ≤ (2κ)1/2


C2

2

N∑

j=1

ε21(j)
d2

j

+ C2
1

N∑

j=1

ε22(j)




1/2

,

where C1, C2 are as in (2.8), (2.9), respectively, and dj ≡ diam(ωj).

Remark 2.1 We note that the above theorem is true even when the patches
ωj are non-convex.

Theorem 2.2 Suppose u ∈ H1(Ω). Suppose the patches ωj satisfy the following
assumption:

For all 1 ≤ j ≤ N , there exists C3 > 0, independent of j, such that

‖v‖L2(ωj) ≤ C3dj |v|H1(ωj), for all v ∈ H1(ωj) satisfying
∫

ωj

v dx = 0, (2.14)

where dj ≡ diam(ωj).
Then, there exists ξ̃u

j ∈ Vj such that

ξ̃u =
N∑

j=1

φj ξ̃
u
j ∈ SGFEM

satisfies

‖u− ξ̃u‖L2(Ω) ≤ C5




N∑

j=1

d2
j ε22(j)




1/2
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and

|u− ξ̃u|H1(Ω) ≤ C6




N∑

j=1

ε22(j)




1/2

,

where C5, C6 depend on C1, C2, C3.

Remark 2.2 It is shown in [3] that (2.14) holds when the patches ωj are convex.
The precise dependence of C5, C6 on C1, C2, C3, and the dependence of the
Poincaré constant C3 on the geometric data of ωj is also given in [3]. In the rest
of the paper, we will not differentiate between various constants, and instead
will use a generic constant C.

Theorem 2.2 gives an error estimate for the GFEM. Suppose the hypothesis
(2.14) is satisfied and suppose u is the solution of (2.4). Then from Theorem
2.2 we have

‖u− uGFEM‖H1(Ω) ≤ ‖u− ξ̃u‖H1(Ω) ≤ C




N∑

j=1

ε22(j)




1/2

.

It will be useful to state this estimate in the form

‖u− uGFEM‖H1(Ω) ≤ C




N∑

j=1

inf
ξj∈Vj

‖u− ξj‖2H1(ωj)




1/2

. (2.15)

To obtain the main result of this paper, we will impose additional restrictions
on the patches {ωj}, the partition of unity {φj}, and the local approximation
spaces Vj . We list them as three assumptions.

Assumption A In addition to (2.5), we assume that

ω∗j ⊂ ωj , 1 ≤ j ≤ N,

where ω∗j is a ball of diameter d∗j , and there exists 0 < σ < 1, independent of
the parameter h, such that

d∗j ≥ σdj , 1 ≤ j ≤ N. (2.16)

Assumption B In addition to (2.6)–(2.9), we assume that

φj(x, y) = 1, for (x, y) ∈ ω∗j .

Since {φj} is a partition of unity, it is clear that ω∗j ∩ ω∗i = ∅ for j 6= i, and
φj(x, y) = 0 for (x, y) ∈ ω∗i when i 6= j.

Assumption C We consider Vj = Pk(ωj), 1 ≤ j ≤ N , where Pk(ωj) is the
space of polynomials of degree k on ωj . We assume that for 1 ≤ p ≤ ∞,

(a) ‖ξ‖W s
p (ωj) ≤ C‖ξ‖W s

p (ω∗j ), for all ξ ∈ Vj and 0 ≤ s ≤ k, (2.17)
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where C depends on k, but not on j or h;

(b) ‖ξ‖W t
p(ωj) ≤ Cd

−(t−s)
j ‖ξ‖W s

p (ωj), for all ξ ∈ Vj and 0 ≤ s ≤ t ≤ k. (2.18)

where C depends on s and t, but is independent of j and h.
Furthermore, when ω̄j ∩ ∂Ω 6= ∅, we may allow ω∗j to be a portion of a ball

bj 6⊂ Ω with center inside ωj , such that ω∗j ≡ bj ∩ Ω satisfies ω∗j ⊂ ωj and

0 < B1 ≤
|ω∗j |
|bj | ≤ B2 < 1, (2.19)

where the constants B1, B2 are independent of j and h, and |ω∗j |, |bj | are the
areas of the sets ω∗j , bj respectively.

We note that (2.17) holds if the patches ωj satisfy some reasonable assump-
tions. For example, let Bj be the smallest ball containing ωj with the same
center as ω∗j . If

1 ≤ diam(Bj)
diam(ω∗j )

≤ C, (2.20)

then one can show that (2.17) is satisfied.

We will often denote SGFEM by

Sh = Sh,k, (2.21)

where k indicates degree of the polynomials used in the Vj ’s. Let {ξji}mj

i=1 be a
basis of Vj for j = 1, 2, . . . , N . Then

ηji = φjξji, 1 ≤ i ≤ mj , 1 ≤ j ≤ N

are the shape functions of Sh. In the following proposition, we give an easy
proof that {ηji} is a linearly independent set.

Proposition 2.1 The set of shape functions {ηji, 1 ≤ i ≤ mj , 1 ≤ j ≤ N} is
linearly independent.

Proof: Suppose the set is linearly dependent and there are constants cji, 1 ≤
i ≤ mj , 1 ≤ j ≤ N , not all zero such that

N∑

j=1

mj∑

i=1

cji ηji(x, y) = 0, for all (x, y) ∈ Ω. (2.22)

Without loss of generality, suppose the constant cj0,i0 6= 0 for some 1 ≤ i0 ≤
mj , 1 ≤ j0 ≤ N . From Assumption B, we have φj0(x, y) = 1 for (x, y) ∈ ω∗j0 ,
and φj(x, y) = 0 for (x, y) ∈ ω∗j0 , j 6= j0. Therefore using (2.22), we get

N∑

j=1

mj∑

i=1

cji ηji(x, y) =
mj0∑

i=1

cj0,iφj0(x, y)ξj0,i(x, y)

=
mj0∑

i=1

cj0,iξj0,i(x, y) = 0, for all (x, y) ∈ ω∗j0 .
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But {ξj0i}mj0
i=1 is a basis of Vj0 , and thus we conclude from above that cj0,i = 0

for 1 ≤ i ≤ mj0 . In particular, we have cj0,i0 = 0, which is a contradiction.
Hence {ηji, 1 ≤ i ≤ mj , 1 ≤ j ≤ N} is linearly independent.

As mentioned before, the set of shape functions {ηji} for the GFEM may
be linearly dependent. In contrast, the set of shape functions for the GFEM
obtained using the patches ωj and the partition of unity functions φj satisfying
assumptions A and B is linearly independent. Thus the linear system (2.13) has
a unique solution.

We now present a few examples of patches {ωj} and partition of unity func-
tions, defined relative to these patches, satisfying assumptions A and B.

Example 1: Let σ ∈ R be such that 0 < σ < 1. Consider r ∈ R such that

σ

1 + σ
≤ r <

1
2
. (2.23)

For r fixed, let s(x) be a smooth function on the interval [r, 1− r] satisfying

s(r) = 1, s(1− r) = 0,

s(t)(r) = s(t)(1− r) = 0, for t = 1, 2, . . . , l

We now define a smooth function φ(x) on [−1, 1] by

φ(x) =





1, |x| ≤ r
0, |x| ≥ 1− r
s(x), r ≤ x ≤ 1− r
1− s(x + 1), −(1− r) ≤ x ≤ −r

Clearly, φ(x) ∈ Cl(−1, 1) and support of φ(x) is [−(1 − r), (1 − r)]. We also
note that

φ(x) + φ(x− 1) = s(x) + 1− s(x) = 1, for r ≤ x ≤ 1− r. (2.24)

Suppose Ω = (0, 1) and we consider the nodes xi = ih, i = 0, 1, 2, . . . , N ,
where Nh = 1. For i = 1, 2, . . . , N − 1, we define patches

ωi = (xi − (1− r)h, xi + (1− r)h) , (2.25)
ω∗i = (xi − rh, xi + rh)

For i = 0, N , we define

ω0 = (0, (1− r)h) , ω∗0 = (0, rh)
ωN = (1− (1− r)h, 1) , ω∗N = (1− rh, 1) (2.26)

Clearly, ∪N
i=0ωi = Ω and ω∗i ⊂ ωi for i = 0, 1, 2, . . . , N . Also using (2.23), we

can easily show that

d∗i
di

=
r

1− r
> σ, for i = 0, 1, . . . , N,
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where di = diam(ωi) and d∗i = diam(ω∗i ). Thus the patches {ωi} satisfy As-
sumption A.

Now for each i, 0 ≤ i ≤ N , define functions φi(x) on Ω by

φi(x) =
{

φ
(

x−xi

h

)
, x ∈ [xi − h, xi + h]

0, x ∈ Ω \[xi − h, xi + h] (2.27)

It is easy to check that φi(x) = 0 for x ∈ Ω \ωi, and φi(x) = 1 for x ∈ ω∗i (which
is Assumption B). Also from a standard scaling argument, it is immediate that

|φ(t)
i (x)| ≤ Ct

|diam(ωi)|t , 0 ≤ t ≤ l,

where Ct depends only on maxy∈[−1,1] |φ(t)(y)|.
We now show that {φj} form a partition of unity. Consider the interval

[xi, xi+1] = [xi, xi + rh] ∪ [xi + rh, xi + (1− r)h] ∪ [xi + (1− r)h, xi+1].

For x ∈ [xi, xi + rh], we have 0 ≤ (x− xi)/h ≤ r, and from the definition of φi

and φ,
N∑

j=0

φj(x) = φi(x) = φ

(
x− xi

h

)
= 1.

Similarly, for x ∈ [xi + (1− r)h, xi+1],

N∑

j=0

φj(x) = φi+1(x) = 1.

For x ∈ [xi + rh, xi +(1− r)h], we have r ≤ (x−xi)/h ≤ 1− r, and from (2.24),

N∑

j=0

φj(x) = φi(x) + φi+1(x)

= φ

(
x− xi

h

)
+ φ

(
x− xi

h
− 1

)
= 1

Thus
N∑

j=0

φj(x) = 1, for all x ∈ Ω.

We note that for a two dimensional domain Ω = (0, 1)× (0, 1), it is possible
to construct patches of the form ωi × ωj and the partition of unity function of
the form φi(x)φj(y) that satisfy Assumptions A and B. We do not describe this
construction in detail here.

Example 2: Let Ω be a domain in R2. For 0 < h < 1, we consider the points
{xh

j ≡ (xh
j , yh

j )}N
j=1 such that xh

j ∈ Ω. We will suppress h in xh
j , and instead

will denote these points by xj . We assume that the points are distributed in a
way such that the following hold:
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(a) For each j, there is a disc O∗j of radius r∗j = O(h) and centered at xj such
O∗j ∩ O∗i = ∅ for i 6= j. Let ω∗j be the disc centered at xj of radius r∗j /2.
If ω∗j 6⊂ Ω, we consider ω∗∗j instead of ω∗j , where ω∗∗j = ω∗j ∩ Ω satisfies
(2.18) with bj = ω∗j and ω∗j = ω∗∗j . We redefine ω∗j as ω∗∗j .

(b) For each j, there is a convex open set (patch) ωj with diam(ωj) = dj =
O(h) such that O∗

j ⊂ ωj and there exists 0 < σ < 1 such that

r∗j ≥ σdj , 1 ≤ j ≤ N.

Moreover, {ωj}N
j=1 form an open cover of Ω satisfying (2.4). It is easy to

check that Assumption A is satisfied.

We will now construct partition of unity functions {φj}, subordinate to the
covering {ωj}, satisfying Assumption B. For each j, we first consider a smooth
non-negative function 0 ≤ ψj(x, y) ≤ 1 on Ω such that

(i) ψj(x, y) =
{

0, (x, y) ∈ ω∗j
1, (x, y) ∈ Ω\O∗j

(2.28)

(ii) max
(x,y)∈Ω

|Dαψj | ≤ C/h|α|, for |α| ≤ 2. (2.29)

The function ψj could be a radial function based on a scaled and suitably defined
one-dimensional function in [0,∞). We then define the function

ψ(x, y) =
N∏

j=1

ψj(x, y).

Clearly, 0 ≤ ψ(x, y) ≤ 1 and using (2.28), (2.29), we can show that

ψ(x, y) =





0, (x, y) ∈ ω∗j , 1 ≤ j ≤ N

1, (x, y) ∈ Ω\ ∪N
j=1 O∗j

ψj(x, y), (x, y) ∈ O∗
j , 1 ≤ j ≤ N

(2.30)

max
(x,y)∈Ω

|Dαψ| ≤ C/h|α|, for |α| ≤ 2 (2.31)

We next consider smooth non-negative functions fj(x, y) with compact sup-
port in the patch ωj , satisfying max(x,y)∈ωj

|Dαfj | ≤ C/h|α| for |α| ≤ 2. The
functions fj(x, y) could be constructed as radial functions with circular support.
Also, the construction of functions fj(x, y) with polygonal support have been
discussed in [16, 15]. We further assume that there exists γ > 0 such that

N∑

j=1

fj(x, y) ≥ γ > 0, for (x, y) ∈ Ω, (2.32)

and define

φ̃j(x, y) = fj(x, y)ψ(x, y) +
[
1− ψj(x, y)

]
, 1 ≤ j ≤ N.

We now state some relevant properties of φ̃j(x, y).
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(i) The supp φ̃j(x, y) ⊂ ωj .

This is clear from the fact that suppfj(x, y) ⊂ ωj and ψj(x, y) = 1 for
(x, y) ∈ Ω\O∗

j (see (2.28).

(ii) φ̃j(x, y) = δij for (x, y) ∈ ω∗i ).

For (x, y) ∈ ω∗j , we have from (2.28) and (2.30), that ψj(x, y) = ψ(x, y) = 0
and thus φ̃j(x, y) = 1. Similarly, we show that φ̃j(x, y) = 0 for (x, y) ∈ ω∗i ,
i 6= j.

(iii) max(x,y)∈ωj
|Dαφ̃j | ≤ C/h|α|, for |α| ≤ 2.

This is obtained using (2.29), (2.31), and the fact that max(x,y)∈ωj
|Dαfj | ≤

C/h|α| for |α| ≤ 2.

(iv) There is γ̃ > 0 such that
∑N

j=1 φ̃j(x, y) ≥ γ̃, for (x, y) ∈ Ω.

To obtain this result, we first note from (ii) that for 1 ≤ i ≤ N and
for (x, y) ∈ ω∗i , we have φ̃i(x, y) = 1 and φ̃j(x, y) = 0 for j 6= i. Thus∑N

j=1 φ̃j(x, y) = φ̃i(x, y) = 1.

Also for (x, y) ∈ Ω\∪N
j=1O∗

j , we have from (2.28) and (2.30) that ψ(x, y) =
1, ψj(x, y) = 1 for all j, and thus from (2.32) we get

∑N
j=1 φ̃j(x, y) ≥ γ.

Moreover, for (x, y) ∈ O∗i \ω∗i , 1 ≤ i ≤ N , we have ψj(x, y) = 1 for j 6= i
and consequently, using (2.32) and assuming γ < 1, we get

N∑

j=1

φ̃j(x, y) ≥ γψi(x, y) + 1− ψi(x, y)

≥ 1− |(γ − 1)|ψi(x, y) > 1 + γ − 1 = γ.

If γ ≥ 1, it is easy to show that
∑N

j=1 φ̃j(x, y) ≥ 1 for (x, y) ∈ O∗
i \ω∗i ,

1 ≤ i ≤ N .

Thus the result is true with γ̃ = min(1, γ).

Finally, we use the technique of Shepard ([21, 31]) to define

φj(x, y) =
φ̃j(x, y)∑N
i=1 φ̃i(x, y)

.

Using the properties (i)–(iv) of φ̃j(x, y), given above, it is easy to check that
{φj}N

j=1 is a partition of unity subordinate to the cover {ωj}N
j=1 satisfying (2.6)-

(2.9) and Assumption B.

The points {xj}N
j=1 considered in this example have to be distributed such

that (a) and (b), mentioned above, are satisfied. For example, if the particles
xj are vertices of a quasi-uniform triangulation of Ω, it is possible to construct
ω∗j , O∗

j , and ωj satisfying (a) and (b).
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3 Interior Estimate

Interior estimates play a crucial role in the study of superconvergence in a
Galerkin method. In a series of papers ([25, 29, 30]), Nitsche, Schatz, and
Wahlbin developed a machinery to establish interior estimates in the context of
finite element method. This theory, which is based on certain axioms on the
finite dimensional approximating subspace, can also be used in the context of
GFEM. In this section, we will show that the finite dimensional space used in
GFEM, i.e., Sh ≡ SGFEM , satisfies the axioms given in [30].

We first state the interior estimate that we will use in the next section. Let
Ω0 ⊂⊂ ΩD ⊂⊂ Ω be domains, where D = dist(Ω0, ∂ΩD). We also assume that
all the patches ωi’s in a neighborhood of ΩD are quasi-uniform, i.e., 0 < β ≤
di/h. We also assume that D ≥ c0h for c0 large enough. Let uh ∈ Sh(ΩD) ≡
SGFEM (ΩD) be such that

B(u− uh, v) = 0, for all v ∈ S̊h(ΩD). (3.1)

Here Sh(ΩD) denotes the restrictions of functions in Sh(Ω) to ΩD, and S̊h(ΩD)
denotes the set of functions in Sh(ΩD) with compact support in the interior of
ΩD. We now state Theorem 1.2 from [30], which will be used later in this paper.

Theorem 3.1 (Theorem 1.2 of [30]) There exists a constant C, depending
only on the constants in the Axioms A1–A5 (given below) over ΩD, such that if
e = u− uh satisfies (3.1), then

|e|W 1∞(Ω0) + D−1‖e‖L∞(Ω0)

≤ C min
χ∈Sh

(|u− χ|W 1∞(ΩD) + D−1‖u− χ‖L∞(ΩD)

)

+CD−2‖e‖L2(ΩD)). (3.2)

Theorem 1.2 of [30] is quite general. The theorem, stated above, can be obtained
by using s = 0, q = 2, and the fact that Ω ⊂ R2 in Theorem 1.2 of [30] .

The above theorem holds provided the subspace Sh(Ω) satisfies certain ax-
ioms. For G ⊂ Ω, let Sh(G) be the restriction of Sh(Ω) to G, and let

S̊h(G) = {χ : χ ∈ Sh(G), supp χ ⊂⊂ G}.

Also, for A ⊂⊂ Ω, define

γ(A) = {j ∈ N : A ∩ ωj 6= ∅}

and
Ã =

⋃

j∈γ(A)

ωj .

It is clear that A ⊂ Ã.
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We now show that there exists positive constants C1, C2, C3, C4, k0, and
h0 < 1 such that the space Sh ≡ SGFEM satisfies the following axioms.

Axiom A1. Approximation . Let G2 ⊂ G ⊂⊂ Ω with dist(G, ∂Ω) ≥ k0h.
Then for each v ∈ W l

q(G2), there exists χ ∈ Sh(G) such that for G1 ⊂⊂ G2

with dist(G1, ∂G2) ≥ k0h,

‖v − χ‖W t
q (G1) ≤ C1h

l−t‖v‖W l
q(G2) (3.3)

for 0 ≤ t ≤ l ≤ k + 1, 1 ≤ q ≤ ∞, t = 0, 1, 2.
Moreover, if supp v ⊂ G1, then χ ∈ S̊h(G2).

Remark 3.1 We note that in [30], the W t,h
q (G1) norm was used in (3.3) instead

of W t
q (G1). It was natural to use W t,h

q (G1) norm in [30], since the space Sh

considered in [30] was a subset of W 1
∞ ∩ C2,h, i.e., the functions is Sh were

piecewise C2 and globally W 1
∞ functions. We note that functions χ ∈ Sh ≡

SGFEM are C2 functions, and thus ‖χ‖W 2,h
q (G1)

= ‖χ‖W 2
q (G1). For a definition

of W t,h
q (G1) norm, we refer to page 925 of [30].

Proposition 3.1 The subspace Sh ≡ SGFEM satisfies Axiom A1.

Proof: Let v̄ be an extension of v to Ω, such that v̄ = v in G2 and

‖v̄‖W l
q(Ω) ≤ C‖v‖W l

q(G2). (3.4)

For existence of such an extension, we refer to [32].
Let ξv̄

j be the averaged Taylor polynomial of v̄ of degree l− 1, averaged over
ω∗j . Then ξv̄

j

∣∣
ωj
∈ Vj , and from Lemma 4.3.8 of [12], we know that

|v̄ − ξv̄
j |W t

q (ωj) ≤ Cdj
l−t|v̄|W l

q(ωj). (3.5)

Define

χ =
N∑

j=1

φjξ
v̄
j .

Clearly, χ ∈ Sh(Ω) and

|v̄ − χ|qW t
q (Ω) ≤ C

N∑

j=1

|φj(v̄ − ξv̄
j )|qW t

q (ωj)
,
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where C depends on κ and q. Therefore, using (2.9), (3.5), and (3.4), we get

|v̄ − χ|qW t
q (Ω) ≤ C

N∑

j=1

t∑

i=0

|φj |qW i∞(ωj)
|v̄ − ξv̄

j |qW t−i
q (ωj)

≤ C

N∑

j=1

t∑

i=0

(dj)−qi(dj)(l−t+i)q|v̄|W l
q(ωj)

≤ C

N∑

j=1

dj
(l−t)q|v̄|q

W l
q(ωj)

≤ Ch(l−t)q|v̄|q
W l

q(Ω)
≤ Ch(l−t)q‖v‖q

W l
q(G2)

.

Hence,
|v − χ|qW t

q (G1)
≤ |v̄ − χ|qW t

q (Ω) ≤ Ch(l−t)q‖v‖q
W l

q(G2)
,

from which we get

‖v − χ‖q
W t

q (G1)
≤ Ch(l−t)q‖v‖q

W l
q(G2)

.

Now letting χ ≡ χ|G ∈ Sh(G) we get the (3.3).
We now suppose that supp v ⊂ G1. We consider k0 large enough that

G̃1 ⊂⊂ G2. Since supp v ⊂ G1, we have ξv̄
j = 0 for j /∈ γ(G1), where v̄ is

defined as the zero extension of v. Thus supp χ ⊂ G̃1 ⊂⊂ G2, and hence,
χ ∈ S̊h(G2), which proves the desired result.

Axiom A2. Inverse inequality . Let G1 ⊂⊂ G2 with dist(G1, ∂G2) ≥
k0h. Then for χ ∈ Sh(G2),

‖χ‖H1(G1) ≤ C2h
−1‖χ‖L2(G2). (3.6)

Moreover,
‖χ‖W s

q (G1) ≤ C2h
t−s−2(1/q1−1/q)‖χ‖W t

q1
(G2), (3.7)

for 0 ≤ t ≤ s ≤ 2, 1 ≤ q1 ≤ q ≤ ∞.

Remark 3.2 We note that (3.6) is a special case of a more general inverse
inequality assumption given in [30]. A careful reading of the proof of Theorem
1.2 in [30] shows that we need only (3.6) to get Theorem 3.1 in this paper.

Proposition 3.2 The subspace Sh ≡ SGFEM satisfies Axiom A2.

Proof: Suppose χ ∈ Sh(G2). Then

χ
∣∣
G1

=
∑

i∈γ(G1)

φiξi, where ξi ∈ Vi.
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Recalling that φi = 0 in Ω\ωi, we have

|χ|2H1(G1)
≤ C

∑

i∈γ(G1)

|φiξi|2H1(G1)

= C
∑

i∈γ(G1)

|φiξi|2H1(ωi)

≤ C
∑

i∈γ(G1)

(
|φi|2W 1∞(ωi)

‖ξi‖2L2(ωi)
+ ‖φi‖2L∞(ωi)

|ξi|2H1(ωi)

)
,

where C depends only on κ. Therefore from (2.8), (2.9), and (2.18) with p = 2,
we have,

|χ|2H1(G1)
≤ Ch−2

∑

i∈γ(G1)

‖ξi‖2L2(ωi)
. (3.8)

We now consider the domain A such that G̃1 ⊂⊂ A ⊂⊂ G2 for k0 sufficiently
large. Then from (2.17), we get

‖χ‖2L2(A) ≥ ‖χ‖2
L2( eG1)

≥
∑

i∈γ(G1)

‖χ‖2L2(ω∗i )

=
∑

i∈γ(G1)

‖ξi‖2L2(ω∗i ) ≥ C
∑

i∈γ(G1)

‖ξi‖2L2(ωi)
,

and thus from (3.8), we have

‖χ‖H1(G1) ≤ Ch−1‖χ‖L2(A) ≤ Ch−1‖χ‖L2(G2),

which is (3.6).
We now prove (3.7) for s = 2 and t = 0. The other cases can be proved

similarly. Using the argument leading to (3.8), but employing (2.18) with p = q,
and the fact that

‖ξi‖Lq(ωi) ≤ C(h2)1/q−1/q1‖ξi‖Lq1 (ωi)

we get,

|χ|qW 2
q (G1)

≤ Ch−2q
∑

i∈γ(G1)

‖ξi‖q
Lq(ωi)

≤ Ch−2q(h2)1−q/q1
∑

i∈γ(G1)

‖ξi‖q
Lq1 (ωi)

.

Therefore,

|χ|W 2
q (G1) ≤ Ch−2(h2)1/q−1/q1


 ∑

i∈γ(G1)

‖ξi‖q
Lq1 (ωi)




1/q

,
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and since q1 ≤ q, we have

|χ|W 2
q (G1) ≤ Ch−2h2(1/q−1/q1)


 ∑

i∈γ(G1)

‖ξi‖q1
Lq1 (ωi)




1/q1

. (3.9)

Again as before, but using (2.17) with p = q1, we can show that

‖χ‖q1
Lq1 (G2)

≥ C
∑

i∈γ(G1)

‖ξi‖q1
Lq1 (ωi)

,

and thus from (3.9) we get

|χ|W 2
q (G1) ≤ Ch−2−2(1/q1−1/q)‖χ‖Lq1 (G2) (3.10)

Similarly we can show that

|χ|W j
q (G1)

≤ Ch−j−2(1/q1−1/q)‖χ‖Lq1 (G2), for j = 0, 1,

and therefore using (3.10) we get

‖χ‖W 2
q (G1) ≤ Ch−2−2(1/q1−1/q)‖χ‖Lq1 (G2),

which is the desired result.

Axiom A3. Superapproximation . Let G1 ⊂⊂ G2 ⊂⊂ G3 with dist(G1, ∂G2) ≥
k0h, dist(G2, ∂G3) ≥ k0h and let ρ ∈ C̊∞(G1). Then for each χ ∈ Sh(G3), there
exists an η ∈ S̊h(G3) such that for some ` > 0,

‖ρχ− η‖Hs(G3) ≤ C3h‖ρ‖W `∞(G1)‖χ‖Hs(G2), s = 0, 1, (3.11)

and
‖η‖Lq(G3) ≤ C‖χ‖Lq(G3), 1 ≤ q ≤ ∞. (3.12)

Furthermore, let G−2 ⊂⊂ G−1 ⊂⊂ G0 ⊂⊂ G1 with dist(G−2, ∂G−1) ≥ k0h,
dist(G−1, ∂G0) ≥ k0h and dist(G0, ∂G1) ≥ k0h. Then, if ρ = 1 on G0, we have
η = χ on G−1 and

‖ρχ− η‖Hs(G3) ≤ C3h‖χ‖Hs(G3\G−2). (3.13)

We first prove the following lemma.

Lemma 3.1 Let ρ be a smooth function on ωi and ξi ∈ Vi. Then there exists
ξ̄i ∈ Vi such that

‖ρξi − ξ̄i‖Hs(ωi) ≤ Ch‖ρ‖W 2∞(ωi)‖ξi‖Hs(ωi), s = 0, 1. (3.14)
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Proof: We prove (3.14) for s = 1. The proof for s = 0 is similar.
Recalling that Vi contains constants, we first decompose ξi as

ξi = ξi1 + ξi2,

where ξi1, ξi2 ∈ Vi and ξi1 is a constant that is orthogonal to ξi2 in H1(ωi) inner
product, i.e., < ξi1, ξi2 >H1(ωi)= 0. Clearly,

∫
ωi

ξi2 dx = 0 and from (2.14), we
have

‖ξi2‖L2(ωi) ≤ Ch|ξi2|H1(ωi). (3.15)

We will now construct ξ̄i = ξ̄i1 + ξ̄i2 ∈ Vi such that (3.14) holds with s = 1.
Let L ∈ P1(ωi) ⊂ Vi such that

‖ρ− L‖W 1∞(ωi) ≤ Ch|ρ|W 2∞(ωi) (3.16)

(L could be the linear Taylor polynomial of ρ centered at the center of ω∗i ). We
choose ξ̄i1 = ξi1L. Clearly, ξ̄i1 ∈ Vi, and using (3.16), we have

‖ρ ξi1 − ξ̄i1‖H1(ωi) = ‖ξi1(ρ− L)‖H1(ωi)

≤ C‖ρ− L‖W 1∞(ωi)‖ξi1‖L2(ωi)

≤ Ch|ρ|W 2∞(Ωi)‖ξi1‖H1(ωi). (3.17)

We next write ρ(x) = ρ̄+ρ∗(x), where ρ̄ is a constant (we may take ρ̄ = ρ(xi),
where xi is the center of ω∗i ), and

‖ρ∗‖L∞(ωi) ≤ Ch‖∇ρ‖L∞(ωi). (3.18)

We now choose ξ̄i2 = ρ̄ξi2. Clearly, ξ̄i2 ∈ Vi and using (3.15) and (3.18), we
have

‖ρξi2 − ξ̄i2‖H1(ωi) = ‖ρ∗ξi2‖H1(ωi)

≤ C‖ρ∗‖L∞(ωi)‖ξi2‖H1(ωi) + C‖∇ρ‖L∞(ωi)‖ξi2‖L2(ωi)

≤ Ch‖∇ρ‖L∞(ωi)‖ξi2‖H1(ωi). (3.19)

Finally, using (3.17), (3.19), and the fact that < ξi1, ξi2 >H1(ωi)= 0, we have

‖ρξi − ξ̄i‖H1(ωi) ≤ ‖ρξi1 − ξ̄i1‖H1(ωi) + ‖ρξi2 − ξ̄i2‖H1(ωi)

≤ Ch|ρ|W 2∞(ωi)‖ξi1‖H1(ωi) + Ch‖∇ρ‖L∞(ωi)‖ξi2‖H1(ωi)

≤ Ch‖ρ‖W 2∞(ωi)‖ξi‖H1(ωi),

which is the desired result.

Proposition 3.3 The subspace Sh = SGFEM satisfies Axiom A3.

Proof: Suppose χ ∈ Sh(G3). Since ρ ∈ C̊∞(G1), the function ρχ has the
form

ρχ =
∑

i∈γ(G1)

ρφiξi, where ξi ∈ Vi.
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Let Pi(ρξi) ∈ Vi be the H1-projection of ρξi onto Vi for i ∈ γ(G1). Then by
Lemma 3.1, we have

‖ρξi−Pi(ρξi)‖H1(ωi) ≤ ‖ρξi− ξ̄i‖H1(ωi) ≤ Ch‖ρ‖W 2∞(ωi)‖ξi‖H1(ωi), i ∈ γ(G1).
(3.20)

Also since Pi(ρξi) is the H1 projection onto Vi, and Vi contains constants, we
have

∫
ωi

[ρξi − Pi(ρξi)] dx = 0, we have from (2.14),

‖ρξi − Pi(ρξi)‖L2(ωi) ≤ Ch|ρξi − Pi(ρξi)|H1(ωi). (3.21)

We now define
η =

∑

i∈γ(G1)

φiPi(ρξi).

Clearly, η ∈ Sh(G3) and η = 0 in Ω\G̃1. We choose k0 large enough such that

G̃1 ⊂⊂ G2. Thus η ∈ S̊h(G3). Now

‖ρχ− η‖2H1(G3)
= ‖ρχ− η‖2

H1( eG1)

≤ C
∑

i∈γ(G1)

‖φi(ρξi − Pi(ρξi)‖2H1( eG1)

= C
∑

i∈γ(G1)

‖φi(ρξi − Pi(ρξi)‖2H1(ωi)

≤ C
∑

i∈γ(G1)

(
‖φi‖2L∞(ωi)

|ρξi − Pi(ρξi)|2H1(ωi)

+‖∇φi‖2L∞(ωi)
‖ρξi − Pi(ρξi)‖2L2(ωi)

)
(3.22)

Thus using (2.9), (3.21), and (3.20) in the above inequality and then using
(2.17), we get

‖ρχ− η‖2H1(G3)
≤ C

∑

i∈γ(G1)

|ρξi − Pi(ρξi)|2H1(ωi)

≤ Ch2‖ρ‖2W 2∞(G1)

∑

i∈γ(G1)

‖ξi‖2H1(ωi)

≤ Ch2‖ρ‖2W 2∞(G1)

∑

i∈γ(G1)

‖ξi‖2H1(ω∗i ). (3.23)

Since G̃1 ⊂ G2, we get

‖χ‖2H1(G2)
≥

∑

i∈γ(G1)

‖χ‖2H1(ω∗i ) =
∑

i∈γ(G1)

‖ξi‖2H1(ω∗i ),

and combining it with (3.23) we have

‖ρχ− η‖H1(G3) ≤ Ch‖ρ‖W 2∞(G1)‖χ‖H1(G2)
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which is (3.11) for s = 1. The case for s = 0 can be proved similarly.
We now prove (3.12). We first note from (3.20) and (2.18) that

‖Pi(ρξi)‖L2(ωi) ≤ ‖ρξi‖L2(ωi) + Ch‖ρ‖W 2∞(ωi)‖ξi‖H1(ωi)

≤ ‖ρ‖L∞(ωi)‖ξi‖L2(ωi) + C‖ξi‖L2(ωi)

≤ C‖ξi‖L2(ωi).

Thus using (2.17) and the above, we get

‖η‖2L2(G3)
≤ C

∑

i∈γ(G1)

‖φi Pi(ρξi)‖2L2(ωi)

≤ C
∑

i∈γ(G1)

‖Pi(ρξi)‖2L2(ωi)

≤ C
∑

i∈γ(G1)

‖ξi‖2L2(ωi)

≤ C
∑

i∈γ(G1)

‖ξi‖2L2(ω∗i ) (3.24)

Now,
‖χ‖2L2(G3)

≥
∑

i∈γ(G1)

‖χ‖2L2(ω∗i ) =
∑

i∈γ(G1)

‖ξi‖2L2(ω∗i ),

and therefore from (3.24), we have

‖η‖L2(G3) ≤ C‖χ‖L2(G3).

Finally, using the fact that Sh(G3) is finite dimensional, we get

‖η‖Lq(G3) ≤ C‖χ‖Lq(G3), for 1 ≤ q ≤ ∞.

We now prove (3.13). We first assume that dist(G−1, ∂G0) ≥ k0h for a
suitable k0 such that G̃−1 ⊂ G0. Since ρ = 1 on G0, we have ρ = 1 on ωi

for i ∈ γ(G−1). Also from the definition of H1 projection, we have Pi(ρξi) =
Pi(ξi) = ξi for i ∈ γ(G−1). Therefore, for x ∈ G−1,

η(x) =
∑

i∈γ(G1)

φi(x)Pi(ρξi)(x) =
∑

i∈γ(G1)

φi(x)ξi(x) = χ(x).

Thus η = χ on G−1.
Now using the argument leading to (3.22) and using (3.21) and (2.9) we

have,
‖ρχ− η‖2H1(G3)

≤ C
∑

i∈γ(G1)

|ρξi − Pi(ρξi)|2H1(ωi)
. (3.25)
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We note that γ(G−1) ⊂ γ(G1). Also recall that ρ = 1 and Pi(ρξi) = ξi on ωi

for i ∈ γ(G−1). Thus from (3.25), (3.20), and (2.17), we get

‖ρχ− η‖2H1(G3)
≤ C

∑

i∈γ(G1)\γ(G−1)

|ρξi − Pi(ρξi)|2H(ωi)

≤ Ch2‖ρ‖2W 2∞(G1)

∑

i∈γ(G1)\γ(G−1)

‖ξi‖2H1(ωi)

≤ Ch2‖ρ‖2W 2∞(G1)

∑

i∈γ(G1)\γ(G−1)

‖ξi‖2H1(ω∗i ). (3.26)

Now,

‖χ‖2H1(G3\G−2)
≥

∑

i∈γ(G1)\γ(G−1)

‖χ‖2H1(ω∗i ) =
∑

i∈γ(G1)\γ(G−1)

‖ξi‖2H1(ω∗i ),

and therefore from (3.26) we get

‖ρχ− η‖H1(G3) ≤ Ch‖ρ‖W 2∞(G1)‖χ‖H1(G3\G−2),

which is the desired result.

We remark that the Axiom A3 as stated in this paper is slightly different
than the Axiom A3 given in [30]. We further remark that Axiom A3 in [30] has
been used only to prove Lemma 2.3 (Page 911) in that paper. We now prove
Lemma 2.3 of [30] using the Axiom A3 as stated in this paper. The proof is
similar to the proof of Proposition 2.2 in [29].

Lemma 3.2 Let D1 ⊂⊂ D2 ⊂⊂ D3. There exists a constant C such that given
χ ∈ Sh(D3), there exists η ∈ S̊h(D3) with η = χ on D2 such that

‖χ− η‖H1(D3\D2) ≤ C‖χ‖H1(D3\D1)

and
‖η‖Lq(D3) ≤ C‖χ‖Lq(D3), for 1 ≤ q ≤ ∞.

Proof: Let D1 ⊂⊂ D2 ⊂⊂ D21 ⊂⊂ D22 ⊂⊂ D23 ⊂⊂ D3. Consider ρ ∈
C̊∞(D22) such that ρ = 1 on D21. Then from (3.13) and (3.12), with D3 = G3,
D23 = G2, D22 = G1, D21 = G0, D2 = G−1, and D1 = G−2, there exists
η ∈ S̊h(D3) with η = χ on D2 such that

‖ρχ− η‖H1(D3) ≤ Ch‖χ‖H1(D3\D1), (3.27)

and
‖η‖Lq(D3) ≤ C‖χ‖Lq(D3).

Since ρ = 1 on D21, we have

‖(1− ρ)χ‖H1(D3) ≤ C‖χ‖H1(D3\D21) ≤ C‖χ‖H1(D3\D1),

21



and thus using the triangle inequality and (3.27), we have

‖χ− η‖H1(D3) ≤ ‖(1− ρ)χ‖H1(D3) + ‖ρχ− η‖H1(D3) ≤ C‖χ‖H1(D3\D1)

Finally, since η = χ on D2, we have

‖χ− η‖H1(D3\D2) = ‖χ− η‖H1(D3) ≤ C‖χ‖H1(D3\D1)

which is the desired result.

Axiom A4. Scaling . Let the sets G in Axiom A1, G2 in Axiom A2, G3

in Axiom A3 be the sphere BD ⊂⊂ Ω of radius D ≥ C4h with center x0. The
linear transformation y = (x − x0)/D takes BD into a sphere B and Sh(BD)
into a new function space S(B). Then S(B) satisfies Axioms A1, A2 and A3
with h replaced by h/D. Furthermore, the constants occurring in Axioms A1,
A2, and A3 remain unchanged, in particular, independent of D.

Using a standard scaling argument argument, one can show that Axiom A4
holds with respect to Axioms A1 and A2. To show that Axiom A4 holds with
respect to Axiom A3, one has to go through the proof of Axiom A3 with Sh(BD)
replaced by S(B). We skip this proof in this paper.

Axiom A5. There exists a constant C5 such that the following holds:
(i) For any x0 ∈ Ω such that the ball B0 of radius h centered at x0 is

contained in Ω, there exists a function δ̃0 ∈ C1 with support in B0 satisfying

χ(x0) =
∫

B0

χδ̃0, for all χ ∈ Sh,

and

‖δ̃0‖Lq ≤ C5h
−N(1−1/q), ‖∇δ̃0‖Lq ≤ C5h

−N(1−1/q)−1, for 1 ≤ q ≤ ∞. (3.28)

(ii) Similarly, for j = 1, 2, . . . , N , there exists δ̃1,j such that

∂χ

∂xj
(x0) =

∫

B0

∂χ

∂xj
δ̃1,j , for all χ ∈ Sh,

and (3.28) holds with δ̃0 replaced by δ̃1,j .

We will show the existence δ̃1,j . The existence of δ̃0 can be shown similarly.
We let h = 1. Let Φ be a smooth non-negative weight function with compact
support in B0 and suppose ∫

B0

Φ dx = 1.

Consider the inner product

< v,w >≡
∫

B0

Φ v w dx,
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and let ψ1, ψ2, . . . , ψ` be an orthonormal basis, with respect to this inner prod-
uct, for the finite dimensional space { ∂χ

∂xj
: χ ∈ Sh(B0)}. Define

δ̃1,j ≡
∑̀

j=1

ψj(x0)ψj(x)Φ(x).

Let χ ∈ Sh such that ∂χ
∂xj

=
∑`

m=1 cmψm. Then

∫

B0

∂χ

∂xj
δ̃1,j dx =

∑̀

j=1

ψj(x0)
∫

B0

[
∑̀
m=1

cmψm]ψjΦ dx

=
∑̀

j=1

ψj(x0)cj =
∂χ

∂xj
(x0).

We get (3.28) by scaling.

Remark 3.3 We mention that another Axiom A0, related to a trace inequality,
was used in [30]. It was relevant there since the functions in Sh, considered
in [30], were piecewise C2 and globally W 1

∞. In our case, the functions in
Sh = SGFEM are globally C2 and thus, a trace inequality like Axiom A0 in [30]
is not needed.

4 Superconvergence

In this section we will present the main result of this paper. i.e., the natural
superconvergence of the derivatives of the Generalized Finite Element solution
in the interior of the domain Ω, away from the boundary of Ω. The analysis
presented in this section will closely follow the analysis given in [10], [35] in the
context of finite element method. We will need several other assumptions that
will be stated in this section.

Without loss of generality, we assume that x0 ≡ (0, 0) ∈ Ω and

Ω0 =
{
x = (x1, x2) ∈ Ω : ‖x‖∞ ≡ max(|x1|, |x2|) ≤ 2H

} ⊂⊂ Ω, (4.1)

where H > 0 will be determined later. We also define the set

Ω1 =
{
x ∈ Ω : ‖x‖∞ ≤ H

}
. (4.2)

It is clear that the solution uh = uGFEM of (2.12) satisfies

B(u− uh, χ) = 0, for all χ ∈ S̊h(Ω0), (4.3)

where we recall that S̊h(Ω0) denotes the restrictions of the functions in Sh(Ω)
with compact support in the interior of Ω0.

23



We now describe several assumptions in SC1 – SC4 that will be used in
the analysis presented in this section.

SC1: We assume that the patches ωi, such that ωi ∩ Ω0 6= ∅, are uniform
and translation invariant as defined below. Consider h̄ > 0, where h̄ is of the
same order as h (recall that diam(ωi) ≤ 2h), i.e., there exists a positive constant
C such that

h̄ = Ch.

Let i ≡ (i1, i2), where i1, i2 = 0,±1,±2, · · · , be the integer lattice. Suppose
xi ≡ ih̄ = (i1h̄, i2h̄) is the center of the circle ω∗i ⊂ ωi for i ∈ γ(Ω0), where

γ(Ω0) =
{
i ∈ Z× Z : ωi ∩ Ω0 6= ∅}

We note that we are enumerating ωi differently from the way we enumerated
them in (2.5). Clearly, xi+j = xi + xj for i, j, i + j ∈ γ(Ω0). We further assume
that for all i ∈ γ(Ω0),

ωi = {x + xi : x ∈ ω0}, (4.4)
ω∗i = {x + xi : x ∈ ω∗0}, (4.5)

φi(x) = φ0(x− xi), x ∈ ωi, (4.6)
Vi =

{
ξi(x) : ξi(x) = ξ0(x− xi), where ξ0 ∈ V0

}
. (4.7)

Clearly,
φi(x− xj) = φi+j(x), for i, j, i + j ∈ γ(Ω0) (4.8)

and
Vi+j =

{
ξi(x− xj) : ξi ∈ Vi

}
, for i, j, i + j ∈ γ(Ω0) (4.9)

SC2: We consider H in (4.1) and (4.2) of the form

H = h̄β (4.10)

where 0 < β < 1 will be determined later. We let

M0 =
{
x ∈ Ω : ‖x‖∞ ≤ h̄/2

}
(4.11)

and define
Mj =

{
x ∈ Ω : x = xj + y, where y ∈ M0

}
(4.12)

Clearly,
Mj =

{
x ∈ Ω : ‖x− xj‖∞ ≤ h̄/2

}
(4.13)

and we assume the h̄ and H are such that

Ω0 =
⋃

xj∈Ω0

Mj . (4.14)

SC3: For a given H, let H̄ > 0 such that

Ω̃0 =
⋃

j∈γ(Ω0)

ωj ⊂ ˜̃Ω0,
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where ˜̃Ω0 =
{
x ∈ Ω : ‖x‖∞ ≤ H̄

}
(4.15)

and H̄ ≤ CH where 1 < C is a fixed constant. We assume that the solution u

of (2.4) is smooth in ˜̃Ω0, i.e.,

‖u‖
W k+2
∞ (

eeΩ0)
≤ C (4.16)

where k is the degree of the polynomials in Vj = Pk(ωj).

SC4: We assume that the solutions u and uh of (2.4) and (2.12) satisfy

Chk ≤ |u− uh|W 1∞(Ω1) (4.17)

‖u− uh‖L∞(Ω0) ≤ Chk+1−ε, (4.18)

where 0 < ε < 1.

We now define a function ρh(x), which will play an important role in the
analysis presented in this section. Towards this end, we first define a linear
operator Ih

i : W k+1
∞ (ωi) → Vi = Pk(ωi) for each i ∈ γ(Ω0) satisfying

(i) Ih
i [pk(·)](x) = pk(x), for x ∈ ωi, and for all pk ∈ Pk (4.19)

(ii) For v ∈ W k+1
∞ (ωi),

‖v − Ih
i [v(·)]‖W l

q(ωi) ≤ Cdk+1−l
i ‖v‖W k+1

q (ωi)
,

for all 0 ≤ l ≤ k + 1 and 1 ≤ q ≤ ∞ (4.20)

(iii) For v ∈ W k+1
∞ (ωj+l) and for all l, l + j ∈ γ(Ω0)

Ih
l+j [v(·)](x + xj) = Ih

l [v(·+ xj)](x), for all x ∈ ωl. (4.21)

For Ih
i [v(·)](x), one could take the restriction of the Taylor polynomial of v(x),

centered at xi, to ωi. We then define the operator Ih : W k+1
∞ ( ˜̃Ω0) → Sh(Ω0) by

Ih[Q(·)](x) =
∑

i∈γ(Ω0)

φi(x)Ih
i [Q(·)](x), x ∈ Ω0, (4.22)

where Q ∈ W k+1
∞ ( ˜̃Ω0). Clearly, for a polynomial pk of degree k,

Ih[pk(·)](x) =
∑

i∈γ(Ω0)

φi(x)Ih
i [pk(·)](x)

=
∑

i∈γ(Ω0)

φi(x)pk(x) = pk(x), x ∈ Ω0 (4.23)

The operator Ih also satisfies the standard interpolation estimate given in
the following lemma.

25



Lemma 4.1 Let v ∈ W k+1
∞ (˜̃Ω0). Then

‖v − Ih[v(·)] ‖W t
q (Ω0) ≤ Chk+1−t‖v‖

W k+1
q (

eeΩ0)
, for 1 ≤ q ≤ ∞ and t = 0, 1, 2.

(4.24)

Proof: We first note that for x ∈ Ω0,

v − Ihv = v −
∑

i∈γ(Ω0)

φi Ih
i [v(·)] =

∑

i∈γ(Ω0)

φi

(
v − Ih

i [v(·)]).

Therefore, using (2.6), (2.9), and (4.20), we have

|v − Ihv|qW t
q (Ω0)

≤ C
∑

i∈γ(Ω0)

∣∣φi

(
v − Ih

i [v(·)])
∣∣q
W t

q (ωi)

≤ C
∑

i∈γ(Ω0)

t∑

j=0

|φi|qW j
∞(ωi)

∣∣v − Ih
i [v(·)]

∣∣q
W t−j

q (ωi)

≤ C
∑

i∈γ(Ω0)

d
(k+1−t)q
i ‖v‖q

W k+1
q (ωi)

≤ Ch(k+1−t)q‖v‖q

W k+1
q (

eeΩ0)
,

where we used the fact that di ≤ 2h in the last step. Thus we get, for small h,

‖v − Ih[v(·)] ‖W t
q (Ω0) ≤ Chk+1−t‖v‖

W k+1
q (

eeΩ0)
,

which is the desired result.

We finally define ρh(x) as

ρh(x) ≡ Q(x)− Ih[Q(·)](x), x ∈ Ω0, (4.25)

where Q(x) is a polynomial of degree k + 1.

Lemma 4.2 ρh(x) is periodic in Ω0, i.e.,

ρh(x) = ρh(x + xj), for x ∈ M0 and x + xj ∈ Ω0.

Proof: We first note that

Q(x) = Q(x + xj)− pk(x; xj), (4.26)

where pk(x; xj) is a polynomial of degree k that depends on xj . Now from the
definition of ρh(x) and using (4.26), (4.23), we have

ρh(x) = Q(x)− Ih[Q(·)](x)
= Q(x + xj)− pk(x; xj)− Ih[Q(·)](x)
= Q(x + xj)− Ih[pk(·; xj) + Q(·)](x)
= Q(x + xj)− Ih[Q(·+ xj)](x). (4.27)
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We will now show that

Ih[Q(·+ xj)](x) = Ih[Q(·)](x + xj), for x ∈ M0 and x + xj ∈ Ω0.

Since x ∈ M0, we have x + xj ∈ Mj , and using (4.21), we get

Ih[Q(·)](x + xj) =
∑

i∈γ(Mj)

φi(x + xj)Ih
i [Q(·)](x + xj)

=
∑

i∈γ(Mj)

φi−j(x)Ih
i [Q(·)](x + xj)

=
∑

l∈γ(M0)

φl(x)Ih
l+j [Q(·)](x + xj)

=
∑

l∈γ(M0)

φl(x)Ih
l [Q(·+ xj)](x)

Thus from (4.27) we get

ρh(x) = Q(x + xj)− Ih[Q(·)](x + xj) = ρh(x + xj)

which is the desired result.

The above result can also be stated as ρh(x) ∈ H1
per(Ω0), where

H1
per(Ω0) =

{
v ∈ H1(Ω0)∩C0(Ω0) : v(x) = v(x+xj) for x ∈ M0, x+xj ∈ Ω0

}
.

(4.28)

Next, for a given v ∈ H1
per(Ω0), we will define its periodic projection

Pperv ∈ Sh(Ω0) ∩ H1
per(Ω0), and present two results that will also be used

in our analysis. We first consider the subspace

Sh
per(M0) =

{
χ ∈ Sh(M0) : χ(−h̄/2, x2) = χ(h̄/2, x2),

χ(x1,−h̄/2) = χ(x1, h̄/2),
for |x1| ≤ h̄/2, |x2| ≤ h̄/2

}
. (4.29)

For v ∈ H1
per(Ω0), we define Pperv ∈ Sh

per(M0) as the projection

BM0(Pperv, χ) = BM0(v, χ), for all χ ∈ Sh
per(M0), (4.30)∫

M0

(v − Pperv) dx = 0, (4.31)

where BM0(u, v) ≡ ∫
M0
∇u ·∇v dx (see 2.3)). We then extend Pperv periodically

to Ω0, again denoted by Pperv, as

Pperv(x) = Pperv(x− xj), for all x ∈ Ω0, x− xj ∈ M0. (4.32)

Thus Pperv ∈ Sh(Ω0) ∩H1
per(Ω0).
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Lemma 4.3 Let v ∈ H1
per(Ω0). Then

B(v − Pperv, χ) = 0, for all χ ∈ S̊h(Ω0). (4.33)

Proof: Since M̊j ’s (i.e., interior of Mj) are non-intersecting and
Ω0 = ∪xj∈Ω0Mj , we note that

B(v − Pperv, χ) =
∑

xj∈Ω0

BMj
(v − Pperv, χ). (4.34)

Now using the periodicity of v − Pperv, we get

BMj (v − Pperv, χ) =
∫

Mj

∇(v − Pperv) · ∇χdx

=
∫

M0

∇(
v(y + xj)− Pperv(y + xj)

) · ∇χ(y + xj) dy

=
∫

M0

∇(
v(y)− Pperv(y)

) · ∇χ(y + xj) dy (4.35)

Thus from (4.34), we get

B(v − Pperv, χ) =
∫

M0

∇(
v − Pperv

) · ∇χ̂ dy = BM0(v − Pperv, χ̂) (4.36)

where
χ̂(y) =

∑

xj∈Ω0

χ(y + xj).

Since χ ∈ S̊h(Ω0), we can show that χ̂ ∈ Sh
per(M0). Thus using (4.30) in (4.36),

we get
B(v − Pperv, χ) = 0

which is the desired result.

Lemma 4.4 Let v ∈ H1
per(Ω0). Then

‖v − Pperv‖L2(Ω0) ≤ Ch‖v‖H1(Ω0). (4.37)

Proof: We first note that since v − Pperv is periodic, using (4.31) we have
∫

Mj

(v − Pperv) dx =
∫

M0

(v − Pperv) dy = 0,

and using Poincare inequality, we get

‖v − Pperv‖L2(Mj) ≤ Ch̄|v − Pperv|H1(Mj) ≤ h|v − Pperv|H1(Mj).
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Therefore,

‖v − Pperv‖2L2(Ω0)
=

∑

xj∈Ω0

‖v − Pperv‖2L2(Mj)

≤ Ch
∑

xj∈Ω0

|v − Pperv|2H1(Mj)

≤ Ch
∑

xj∈Ω0

{|v|2H1(Mj)
+ |Pperv|2H1(Mj)

}

= Ch
{|v|2H1(Ω0)

+ |Pperv|2H1(Ω0)

}
. (4.38)

Again using the periodicity of v and Pperv, and the fact that Pperv
∣∣
M0

is the
projection of v

∣∣
M0

onto Sh
per(M0), we have

|Pperv|H1(Ω0) ≤ C|v|H1(Ω0),

and thus from (4.38), we get the desired result.

We now present our main theorem.

Theorem 4.1 Suppose the assumptions A1–A3 hold and the assumption SC1–
SC4 are satisfied with 0 < β < 1− ε, where β and ε are as in (4.10) and (4.18)
respectively. Also assume that

∑
|s|=k+1 |Dsu(x0)|2 > 0, where s = (s1, s2) is a

multi-index and x0 = (0, 0). Then, for h small enough, there exists α > 0 such
that, for i = 1, 2,

∂

∂xi
(u− uh)(x) =

∂

∂xi
(ρh − Pperρ

h)(x) + Ri(x), for x ∈ Ω1, (4.39)

where
‖Ri‖L∞(Ω1) ≤ Chk+α,

and Q(x) in the definition of ρh(x) (see (4.25)) is the (k + 1)th degree Taylor
polynomial of u centered at x0.

Remark 4.1 We note that we have assumed u to be smooth; in particular, u
satisfies (4.16) in assumption SC4 .

Remark 4.2 If x∗ ∈ Ω1 is a zero of ∂
∂xi

(ρh − Pperρ
h), then from the above

result we get ∣∣∣∣
∂

∂xi
(u− uh)(x∗)

∣∣∣∣ ≤ Chk+α,

and thus x∗ is a natural superconvergence point of ∂
∂xi

(u− uh).

Proof of Theorem 4.1: The proof will be given in four steps.
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1. Since Q is the (k + 1)th degree Taylor polynomial of u centered at x0 =
(0, 0), we have

‖u−Q‖W s∞(Ω0) ≤ ‖u−Q‖
W s∞(

eeΩ0)

≤ CH̄k+2−s ≤ CHk+2−s, for 0 ≤ s ≤ k + 2, (4.40)

where ˜̃Ω0 is defined in (4.15). We now define the Neumann projection Ph
NQ of

Q onto Sh(Ω0) by

BΩ0(Q− Ph
NQ, χ) = 0, for all χ ∈ Sh(Ω0) (4.41)∫

Ω0

(Q− Ph
NQ) dx = 0. (4.42)

We write
u− uh = (Q− Ph

NQ) +
[
(u−Q)− (uh − Ph

NQ)
]
,

and thus,

∂

∂xi
(u− uh)(x) =

∂

∂xi
(Q− Ph

NQ)(x) + ri(x), for x ∈ Ω1, (4.43)

where
‖ri‖L∞(Ω1) ≤ |(u−Q)− (uh − Ph

NQ)|W 1∞(Ω1). (4.44)

We will estimate the term on right hand side of this inequality.
2. Since S̊h(Ω0) ⊂ Sh(Ω0), from (4.3) and (4.41) we have

B
(
(u−Q)− (uh − Ph

NQ), χ) = 0, for all χ ∈ S̊h(Ω0). (4.45)

Therefore using (4.44) together with the interior estimate (3.2) with D = H,
ΩD = Ω0, and Ω0 in (3.2) replaced by Ω1 in (4.2), we have

‖ri‖L∞(Ω1) ≤ C min
χ∈Sh(Ω0)

[
‖(u−Q)− χ‖W 1∞(Ω0) + H−1‖(u−Q)− χ‖L∞(Ω0)

]

+CH−2‖(u−Q)− (uh − Ph
NQ)‖L2(Ω0). (4.46)

From the approximation axiom (3.3) and (4.40), we get

‖(u−Q)− χ‖W 1∞(Ω0) ≤ Chk‖u−Q‖
W k+1
∞ (

eeΩ0)
≤ ChkH.

Similarly, we get
‖(u−Q)− χ‖L∞(Ω0) ≤ Chk+1H.

Therefore, from (4.46) we have

‖ri‖L∞(Ω1) ≤ ChkH + CH−2‖(u−Q)− (uh − Ph
NQ)‖L2(Ω0), (4.47)

where we used the fact that h < H.
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Now using the assumption (4.18), we get

‖u− uh‖L2(Ω0) ≤ CH‖u− uh‖L∞(Ω0) ≤ CHhk+1−ε. (4.48)

Since Ω0 is convex, using a standard duality argument, a property of the pro-
jection Ph

NQ, and (4.40), we get

‖Q− Ph
NQ‖L2(Ω0) ≤ Ch|Q− Ph

NQ|H1(Ω0)

≤ Chk+1‖Q‖
Hk+1(

eeΩ0)

≤ Chk+1H̄‖Q‖
W k+1
∞ (

eeΩ0)

≤ Chk+1H‖u‖
W k+1
∞ (

eeΩ0)
≤ Chk+1−εH. (4.49)

Therefore, from (4.47) and (4.48) we have

‖ri‖L∞(Ω1) ≤ ChkH + CH−2
[
‖u− uh‖L2(Ω0) + ‖Q− Ph

NQ‖L2(Ω0)

]

≤ ChkH + CH−1hk+1−ε. (4.50)

3. We now consider the term ∂
∂xi

(Q− Ph
NQ) in (4.43). Let

ψ(x) ≡ ρh(x)− Pperρ
h(x),

where ρh(x) was defined in (4.25) (with Q as in this theorem) and Pperρ
h(x) is

its periodic projection (see (4.30)–(4.31)). We write

Q− Ph
NQ = ψ + Q− Ph

NQ− ψ.

Thus, for x ∈ Ω1,

∂

∂xi
(Q− Ph

NQ)(x) =
∂

∂xi
ψ(x) + r̄i(x), (4.51)

where
‖r̄i‖L∞(Ω1) ≤ |Q− Ph

NQ− ψ|W 1∞(Ω1). (4.52)

To estimate the right hand side of the above inequality, we note that

Q− Ph
NQ− ψ = Q− Ph

NQ− ρh + Pperρ
h

= Q− Ph
NQ−Q + Ih[Q(·)] + Pperρ

h

= Ih[Q(·)]− Ph
NQ + Pperρ

h,

and thus Q− Ph
NQ− ψ ∈ Sh(Ω0).

We recall that ρh ∈ H1
per(Ω0). Therefore from (4.33) and (4.41), we get

B(Q− Ph
NQ− ψ, χ) = 0, for all χ ∈ S̊h(Ω0).

31



Hence from the interior estimate (3.2) with u = 0 (also D, ΩD, and Ω0 redefined
as before) and using (4.49) and (4.37), we get

|Q− Ph
NQ− ψ|W 1∞(Ω1) ≤ CH−2‖Q− Ph

NQ− ψ‖L2(Ω0)

≤ CH−2‖Q− Ph
NQ‖L2(Ω0) + CH−2‖ψ‖L2(Ω0)

≤ CH−1hk+1−ε + CH−2h‖ρh‖H1(Ω0). (4.53)

Also from (4.24) and (4.40), we have

‖ρh‖H1(Ω0) = ‖Q− Ih[Q(·)] ‖H1(Ω0)

≤ Chk‖Q‖
Hk+1(

eeΩ0)

≤ ChkH‖Q‖
W k+1
∞ (

eeΩ0)
≤ ChkH‖u‖

W k+1
∞ (

eeΩ0)
≤ ChkH.

Thus from (4.52) and (4.53), we get

‖r̄i‖L∞(Ω1) ≤ |Q− Ph
NQ− ψ|W 1∞(Ω1) ≤ CH−1hk+1−ε + CH−1hk+1. (4.54)

4. Finally combining (4.43), (4.50), (4.51), and (4.54), and writing Ri(x) =
ri(x) + r̄i(x), we obtain

∂

∂xi
(u− uh)(x) =

∂

∂xi
ψ(x) + Ri(x), for x ∈ Ω1,

where

‖Ri‖L∞(Ω1) ≤ ‖ri‖L∞(Ω1) + ‖r̄i‖L∞(Ω1) ≤ ChkH + CH−1hk+1−ε + CH−1hk+1.

We now recall that H = h̄β , where h̄ = Ch and 0 < β < 1 to be determined.
Therefore,

‖Ri‖L∞(Ω1) ≤ Chk+β + Chk+1−β−ε ≤ Chk(hβ + h1−β−ε)

We choose β such that 0 < β < 1− ε, and define

α = min(β, 1− β − ε),

to get
‖Ri‖L∞(Ω1) ≤ Chk+α,

which is the desired result.

Remark 4.3 In the proof of Theorem 4.1, we considered ρh(x) = Q(x) −
Ih[Q(·)](x), where Q(x) was the Taylor polynomial of degree k + 1 centered
at x0. In fact, it can be easily shown that (4.39) holds when Q(x) is the poly-
nomial

∑k+1
i=0 [∂i

1∂
k+1−i
2 u(0, 0)] xi

1x
k+1−i
2 of degree k+1 (a linear combination of

monomials of degree (k + 1)).
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Remark 4.4 In Remark 4.2, we have seen that the zeros of ∂
∂xi

(ρh−Pperρ
h) are

the superconvergence points. Because of the periodicity of ρh−Pperρ
h, we only

need the zeros x∗0 of ∂
∂xi

(ρh−Pperρ
h) in the cell M0. All other superconvergence

points in Ω1 can be found by a simple translation x∗i = x∗0 +xi, where x∗0 +xi ∈
Ω1. The points x∗0 can be obtained by finding the zeros x̂∗0 of ∂

∂x̂i
(ρ̂h − P̂perρ̂

h)
in the “master cell” with h̄ = 1, and then scaling back x̂∗0 to M0. Thus the
computation of x∗i does not depend on h or the solution u of (2.4).

Remark 4.5 It is immediate from (4.17) and (4.39) that

∥∥∥ ∂

∂xi

[
(u− uh)− (ρh − Pperρ

h)
]∥∥

L∞(Ω1)
≤ hα|u− uh|W 1∞(Ω1)

and ∣∣∣ ∂

∂xi
(u− uh)(x∗i )

∣∣∣ ≤ hα|u− uh|W 1∞(Ω1)

where x∗i is a superconvergence point.

We recall that we considered the partition of unity functions φi, used in
SGFEM , to be C2 functions, and thus uh ∈ SGFEM is also a C2 function.
We will now present a result on the superconvergence related to the second
derivatives of u − uh. The analysis will be essentially same as the analysis in
Theorem 4.1, but we will require additional assumptions.

Let Ω2 ⊂ Ω1 be a square centered at x0 given by

Ω2 =
{
x ∈ Ω : ‖x‖∞ ≤ H/2

}
.

In addition to the assumptions in Theorem 4.1, we assume that k ≥ 2 and

Chk−1 ≤ ‖u− uh‖W 2∞(Ω2) (4.55)

We now present a theorem, which is another important result of this section.
In the proof of this theorem, we will use certain technical results obtained in
the proof of Theorem 4.1.

Theorem 4.2 Suppose all the assumptions of Theorem 4.1 hold. Also suppose
that (4.55) is satisfied and k ≥ 2. Let s = (s1, s2) be the multi-index with
|s| = 2. Then, for h small enough, there exists α > 0 such that

Ds(u− uh)(x) = Ds(ρh − Pperρ
h)(x) + Rs(x), x ∈ Ω2, (4.56)

where
‖Rs‖L∞(Ω2) ≤ Chk−1+α ≤ Chα‖u− uh‖W 2∞(Ω2).

and Q(x) in the definition of ρh(x) (see (4.25)) is the (k + 1)th degree Taylor
polynomial of u centered at x0 = (0, 0).
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Remark 4.6 We note that, as in Theorem 4.1, we have also assumed u to be
smooth in this theorem ; in particular, u satisfies (4.16) in assumption SC4 .

Proof: With Q(x) and Ph
NQ as in the proof of Theorem 4.1, we write

Ds(u− uh)(x) = Ds(Q− Ph
NQ)(x) + rs(x), for x ∈ Ω2, (4.57)

where
‖rs‖L∞(Ω2) ≤ ‖(u−Q)− (uh − Ph

NQ)‖W 2∞(Ω2). (4.58)

Let vh ∈ Sh(Ω0) be arbitrary. Using the inverse inequality (3.7), we have

‖(u−Q)− (uh − Ph
NQ)‖W 2∞(Ω2) ≤ ‖(u−Q)− vh‖W 2∞(Ω2)

+‖vh − (uh − Ph
NQ)‖W 2∞(Ω2)

≤ ‖(u−Q)− vh‖W 2∞(Ω2)

+Ch−1‖vh − (uh − Ph
NQ)‖W 1∞(Ω1)

≤ ‖(u−Q)− vh‖W 2∞(Ω2)

+Ch−1‖(u−Q)− vh‖W 1∞(Ω1)

+Ch−1‖(u−Q)− (uh − Ph
NQ)‖W 1∞(Ω1).

Therefore, using the approximation property (3.3) and (4.40) in the proof of
Theorem 4.1, we get

‖(u−Q)− (uh − Ph
NQ)‖W 2∞(Ω2) ≤ Chk−1‖u−Q‖W k+1

∞ (Ω0)

+Ch−1‖(u−Q)− (uh − Ph
NQ)‖W 1∞(Ω1)

≤ CHhk−1

+Ch−1‖(u−Q)− (uh − Ph
NQ)‖W 1∞(Ω1).

(4.59)

A careful examination of the arguments leading to (4.50) shows that

‖(u−Q)− (uh − Ph
NQ)‖W 1∞(Ω1) ≤ ChkH + CH−1hk+1−ε,

and thus from (4.58) and (4.59), we get

‖rs‖L∞(Ω2) ≤ CHhk−1 + CH−1hk−ε. (4.60)

Again, with ψ as in the proof of Theorem 4.1, we write

Ds(Q− Ph
NQ)(x) = Dsψ + r̄s, for x ∈ Ω2, (4.61)

where
‖r̄s‖L∞(Ω2) ≤ ‖Q− Ph

NQ− ψ‖W 2∞(Ω2). (4.62)

We have seen in the proof of Theorem 4.1 (in the paragraph after (4.52)) that
Q− Ph

NQ− ψ ∈ Sh(Ω0). Therefore using the inverse inequality (3.7) we get,

‖Q− Ph
NQ− ψ‖W 2∞(Ω2) ≤ Ch−1‖Q− Ph

NQ− ψ‖W 1∞(Ω1). (4.63)
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We have also shown in (4.54) in the proof of Theorem 4.1 that

‖Q− Ph
NQ− ψ‖W 1∞(Ω1) ≤ CH−1hk+1−ε + CH−1hk+1,

and thus from (4.62) and (4.63), we get

‖r̄s‖L∞(Ω2) ≤ CH−1Hk−ε + CH−1hk. (4.64)

Finally, writing Rs(x) = rs(x) + r̄s(x) and combining (4.57), (4.60), (4.61),
and (4.64), we get

Ds(u− uh)(x) = Dsψ(x) + Rs(x), for x ∈ Ω2,

where

‖Rs‖L∞(Ω2) ≤ ‖rs‖L∞(Ω2) + ‖r̄s‖L∞(Ω2)

≤ CHhk−1 + CH−1hk−ε

= Chk−1(hβ + h1−β−ε)

Thus, choosing 0 < β < 1 − ε and α = min(β, 1 − β − ε), and using (4.55), we
get

‖Rs‖L∞(Ω2) ≤ Chk−1+α ≤ Chα‖u− uh‖W 2∞(Ω2),

which is the desired result.

Remark 4.7 We note that following the arguments presented in the proof of
Theorem 4.2, it is possible to obtain a superconvergence result like (4.56) for
higher derivatives of u − uh, i.e., for Ds(u − uh) for |s| > 2. We do not give a
proof this result here to keep the exposition simpler.

5 Example

In this section, we will present a computational example to illuminate the results
given in Section 4.

We consider the one-dimensional version of the problem (2.1) with Ω = (0, 1),
where the exact solution is u(x) = sin(πx/2). To approximate this solution by
GFEM, we choose nodes xi = ih, i = 0, 1, · · · , N , where Nh = 1, and define
patches ωi as in Example 1 in Section 2 (see (2.25), (2.24)). For partition of
unity functions to be used in the GFEM, we employ functions φi(x), as defined
in (2.27), with r = 0.3 and s(x) = q(x− r), where

q(y) =

[
1−

(
y

1− 2r

)4
]4

, 0 ≤ y ≤ 1− 2r.

We use the space of linear polynomials for local approximating spaces, i.e., Vj =
P1(ωj). We denote the GFEM approximation of u(x) by uGFEM (x) = uh(x).
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It is clear from (4.39) of Theorem 4.1 that, for h small, the superconvergence
points of u′ − u′h in [xj , xj+1] ⊂⊂ Ω are the roots of [ρh − Pperρ

h]′ in [xj , xj+1].
We obtain these roots by first finding the roots y∗ of d

dy [ρ̂−Pperρ̂] on the master
“cell” 0 ≤ y ≤ 1. Here

ρ̂ = y2 −
1∑

i=0

φi(y)Ii(y),

where φi(y) is the PU function with h = 1 and Ii(y) is the Taylor polynomial of
y2, restricted to ωi with h = 1. Also Pperρ̂ is defined as Pperρ̂ ∈ Sper, such that

∫ 1

0

[Pperρ̂]′v′ dy =
∫ 1

0

ρ̂′v′, for all v ∈ Sper

∫ 1

0

Pperρ̂ dy =
∫ 1

0

ρ̂ dy

where
Sper = span

{
1, φ0(y)y + φ1(y)(y − 1)

}

Finally, the superconvergence points x∗ of u′−u′h in [xj , xj+h] is given by scaling
as

x∗ = xj + y∗h.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

y
1
*  y

2
*  

Figure 5.1: Graph of d
dy

[ρ̂− Pperρ̂] on the master cell [0, 1].

In Figure 5.1, we present the graph of d
dy [ρ̂ − Pperρ̂] in [0, 1]. The roots of

this function are y∗1 = 0.058309 and y∗2 = 0.555216. Consequently, the super-
convergence points of u′ − u′h in [xj , xj+1] are

x∗1 = xj + 0.058309 h, and x∗2 = xj + 0.555216 h. (5.1)
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Figures 5.2 (a) and (b): (a) Graph of u′ − u′h on Ω = (0, 1) with h = 0.1.

(b) Graph of u′ − u′h on (xj , xj+1) = (0.5, 0.6)

In Figure 5.2a, we present the graph of the error u′ − u′h on Ω = (0, 1),
where uh is the GFEM approximation of u with h = 0.1. It is interesting to
note that u′ − u′h is zero at several points in the domain Ω = (0, 1). In Figure
5.2b, we present the graph of u′ − u′h on (xj , xj+1) = (0.5, 0.6), and also show
the superconvergence points x∗1 = 0.5058309 and x∗2 = 0.5555216. It is clear
from Figure 5.2b that |(u′ − u′h)(x∗i )| for i = 1, 2 is much smaller than the
max |(u′ − u′h)(x)|, .5 ≤ x ≤ .6.

We next computed the GFEM approximation uh for h = 0.1, 0.05, 0.025,
and 0.0125. For each value of h, in Table 5.1 we display M = max(u′ − u′h)(x),
x ∈ [xj , xj+1] = [0.5, 0.5 + h], e′i ≡ |(u′ − u′h)(x∗i )| and ei/M for i = 1, 2, where
x∗i are the superconvergence points in [0.5, 0.5 + h], given in (5.1).

h M e′1 e′1/M e′2 e′2/M
0.1 1.13× 10−1 2.68× 10−3 2.37× 10−2 1.89× 10−3 1.66× 10−2

0.05 5.42× 10−2 6.76× 10−4 1.25× 10−2 4.97× 10−4 9.16× 10−3

0.025 2.65× 10−2 1.70× 10−4 6.41× 10−3 1.27× 10−4 4.80× 10−3

0.0125 1.31× 10−2 4.30× 10−5 3.29× 10−3 3.15× 10−5 2.41× 10−3

Table 5.1

It is clear from Table 5.1 that the ratios e′1/M and e′2/M decrease as h decreases,
which illuminates the Remark 4.5. It also indicates that x∗1 and x∗2 are indeed
superconvergent points of u′ − u′h in [xj , xj+1] = [0.5, 0.5 + h].
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[10] I. Babuška, T. Strouboulis, C. S. Upadhyay, and S. K. Gangaraj. Computer
based proof of the existence of superconvergence points in the finite element
method: Superconvergence of the derivatives in finite element solutions of
Laplace’s, Poison’s and the elasticity equations. Numer. Methods for PDEs,
12:347–392, 1996.

[11] J. H. Bramble and A. H. Schatz. Higher order local accuracy by averaging
in the finite element method. Math. Comp., 31:94–111, 1977.

[12] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. Springer-Verlag, New York, 2002.

[13] C. M. Chen. Structure Theory of Superconvergence of Finite Elements (in
Chinese). Hunan Science and Technology Press, Changsha, 2001.

[14] C. M. Chen and Y. Q. Huang. High Accuracy Theory of Finite Element
Methods (in Chinese). Hunan Science and Technology Press, Changsha,
1995.

[15] C. A. Duarte, D. Q. Migliano, and E. B. Becker. A technique to combine
meshfree and finite element based partition of unity approximations. to be
published.

38



[16] H. C. Edwards. C∞ finite element basis functions. Technical Report 96–45,
TICAM, University of Texas at Austin, 1996.

[17] Jr. J. Douglas and T. Dupont. Some superconvergence results for Galerkin
methods for the approximate solution of two-point boundary value prob-
lems. In Topics in Numerical Analysis (Proc. Roy. Irish Acad. Conf., Univ.
Coll., Dublin, 1972), pages 89–92, London, 1973. Academic Press.

[18] Jr. J. Douglas, T. Dupont, and M. F. Wheeler. An l∞ estimate and a
superconvergence result for a Galerkin method for elliptic equations based
on tensor products of piecewise polynomials. RAIRO Anal. Numer., 8:61–
66, 1974.
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