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Abstract. In this paper, we have studied the effect of numerical integra-
tion on the Finite Element Method (FEM) based on piecewise polynomials of
degree k, in the context of approximating linear functionals, which are also
known as “quantities of interest”. We have obtained the optimal order of con-
vergence, O(h2k), of the error in the computed functional, when the integrals
in the stiffness matrix and the load vector are computed with a quadrature
rule of algebraic precision 2k− 1. However, this result was obtained under an
increased regularity assumption on the data, which is more than required to
obtain the optimal order of convergence of the energy norm of the error in the
finite element solution with quadrature. We have obtained a lower bound of
the error in the computed functional for a particular problem, which indicates
the necessity of the increased regularity requirement of the data. Numeri-
cal experiments have been presented indicating that over-integration may be
necessary to accurately approximate the functional, when the data lack the
increased regularity.

1. Introduction

Determination of various quantities of interest is one of the major goals in sci-
entific computation. For example in elasticity computations, typical quantities of
interest are various resultants, stress intensity factors, etc. These quantities are
values of functionals evaluated at the solution of the underlying problems, e.g., the
solution of the system of partial differential equations modeling elasticity (Lamé
equations).

Suppose the solution of the problem is characterized by the solution u ∈ V ⊂
H1(Ω) of the variational problem

a(u, v) = f(v), ∀ v ∈ V,

where a(·, ·) is a continuous bilinear form satisfying the inf-sup condition on V ×V
and f(·) is a continuous linear form on V . Then the quantity of interest is given
by G(u), where G(·) is a bounded linear functional on V , characterized by g ∈ V
satisfying G(v) = a(v, g), ∀ v ∈ V . G(u) is approximated by the quantity G(uh),
where uh ∈ Sh ⊂ V is the Galerkin approximation of u. Using the Galerkin
orthogonality a(u − uh, v) = 0, ∀ v ∈ Sh, the error in the computed quantity of
interest G(uh) is given by

(1) G(u)−G(uh) = a(u− uh, g − v), ∀ v ∈ Sh.
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In particular, if uh is the solution of the finite element method based on piecewise
polynomials of degree k, and if u, g ∈ Hk+1(Ω), then

|G(u)−G(uh)| ≤ C‖u− uh‖H1(Ω)‖g − gh‖H1(Ω) = O(h2k).

We note that the enhanced accuracy (which is same as ‖u − uh‖2H1(Ω)) in the
computed quantity of interest is the consequence of the Galerkin orthogonality.

In many applications, the quantity of interest, e.g., stress intensity factors or
resultants as mentioned before, is given as F (u), where the functional F (·) is not
bounded on V but F (u) is finite. In such situations, F (·) could be expressed in
terms of a bounded linear functional G(·) on V , and F (u) is approximated by a
quantity Fuh

, which is computed using the values of G(uh), such that

F (u)− Fuh
≈ G(u)−G(uh).

We will illustrate a procedure to write F (u) in terms of a bounded linear functional
G(u) in Section 4. These ideas were first systematically studied in [1, 2]. A detailed
discussion on computing various quantities of interest can also be found in Chapter
11 of [15]. We note however that Fuh

will have the enhanced accuracy again as a
consequence of the Galerkin orthogonality.

In a finite element method, the definite integrals in the elements of the stiffness
matrix and the load vector are approximated by numerical integration; as a conse-
quence, the Galerkin orthogonality is violated and (1) does not hold. In this paper,
we will address the consequences of the violation of the Galerkin orthogonality and
study the effect of numerical integration on the accuracy of the computed quantity
of interest. We will show that the loss of accuracy in the computed quantity of
interested due to numerical integration could be more than the loss of accuracy in
the energy norm of the finite element solution due to numerical integration. We
will also give sufficient conditions on the quadrature as well as on the data of the
problem that will yield accurate values of the computed quantity of interest.

The effect of numerical integration on the finite element solution uh have been
studied by various authors; we mention [12], [13], [10], [11], [5], and [7] (for the
p-version). An excellent exposition of this problem is given in [9] and we will use
various ideas from [9] in this study. It is well-established (see Theorem 4.1.6 in [9])
that the error in uh in the energy norm yields optimal order of convergence, O(hk)
provided

• the numerical integration rule used on each triangle of the finite element
triangulation is exact for all polynomials of degree 2k − 2,

• the exact solution u ∈ Hk+1(Ω) and the data of the underlying problem, i.e.,
the variable coefficients and the load function of the PDE, have sufficient
regularity depending on k,

where the finite element method is based on piecewise polynomials of degree k.
In this paper, we have considered the finite element method based on a quasi-

uniform mesh on a polygonal domain and have obtained the following results:

• We have shown that the error in the computed quantity of interest, under
numerical integration, is O(h2k). We obtained this result under the assump-
tion that u, g ∈ Hk+1(Ω), the numerical integration rule on each triangle is
exact for all polynomials of degree 2k − 1, and the data of the underlying
problem have more regularity than is required to obtain the optimal order
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of convergence of the energy norm of the error in uh, as mentioned in the
second bullet of the last paragraph.

• We have obtained a lower bound of the error in the computed quantity
of interest for a particular problem. This result indicates that increased
regularity assumptions on the data of the problem, as mention in the last
bullet, is in general necessary.

We have also presented computational results in this paper that show that “over-
integration” may be required to obtain accurate value of the quantity of interest,
when the data of the problem do not have the required increased regularity.

We mention that the error in the computed functional is similar to the error
in approximate eigenvalues, obtained from the finite element method with exact
integration; both are O(h2k), where k is the degree of the polynomials used in the
finite element method. The same result for the error in approximate eigenvalues,
i.e., O(h2k), was obtained in [6] in the presence of numerical integration. However,
it required an increased regularity assumption on the data - similar to what we
require to obtain the error in the computed functional (i.e., O(h2k)) under numer-
ical integration, mentioned before. In contrast to [6], we show that this increased
regularity of the data is also in general necessary in the context of approximation
of functionals.

We note that the use of a numerical integration rule that is exact for the polyno-
mials of degree 2k− 1 is not restrictive, as the quadrature rules used in most finite
element codes satisfy this condition. But the increased regularity requirement on
the data of the problem may have serious consequences. This requirement indicates
that the Jacobian of the mapping for a curved element in a finite element trian-
gulation (in the case of a non-polygonal domain) should be sufficiently smooth –
a requirement that is restrictive especially in the h-p version of the finite element
method, where a curved element could be large and the Jacobian of the associated
mapping may not have the required increased regularity. In such situations, over-
integration may become necessary to control the energy norm of the error in the
finite element solution; but even more over-integration may be required to control
the error in the computed quantity of interest. We have not studied curved elements
or h-p version of finite element method in this paper, but the results presented in
this paper could be helpful in the analysis of such problems.

The paper is organized as follows. In Section 2, we have given the notation
and the model problem, and defined the finite element method with numerical
integration. We then defined the quantity of interest as a bounded linear functional
G(u), and presented the optimal error estimate for the computed value of G(u) in
the case of exact integration. In Section 3, we presented one of our main results,
where we obtained the optimal error estimate for the computed value of G(u) in
the presence of numerical integration. We derived a lower bound of the error in the
computed value of a linear functional for a particular problem in the presence of
numerical integration in Section 4, which is another main result of this paper. In
Section 5, we gave some computational results that illuminate the results obtained
in Sections 3 and 4.

2. Preliminaries and notation

The model problem: Let Ω ⊂ Rn be a bounded n-dimensional domain with
piecewise straight faces. We consider standard Sobolev spaces Hm(Ω) with norm
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‖ · ‖Hm(Ω) and semi-norm | · |Hm(Ω). In addition, we denote by H1
0 (Ω) ⊂ H1(Ω) the

subspace consisting of zero-trace functions.
We consider the following elliptic boundary value problem:

(2)
{ −divA∇u = f in Ω

u = 0 on ∂Ω,

where A = (aij(x)) is a symmetric matrix, and aij(x) are smooth functions. We
will refer to the functions aij(x) and f(x) as the data of the problem. We assume
that A satisfies the uniform ellipticity condition, i.e., there exists a constant C > 0,
such that

n∑

i,j=1

aij(x)ξiξj ≥ C

n∑

i=1

ξ2
i , ∀ξ ∈ Rn, ∀x ∈ Ω̄.

The variational form of the problem (2) is given as

(3)
{

u ∈ H1
0 (Ω),

a(u, v) :=
∫
Ω

∑n
i,j=1 aij

∂u
∂xi

∂v
∂xj

dx =
∫
Ω

fvdx, ∀v ∈ H1
0 (Ω).

It is well-known that the bilinear form a(·, ·) is coercive and bounded, and ‖v‖a :=√
a(v, v) defines an equivalent norm on H1

0 (Ω); the problem (3) has a unique solu-
tion.

The finite element method: Let T be a quasi-uniform triangulation of Ω, and
let

Sh = {v ∈ C0(Ω̄), v|∂Ω = 0, v|K ∈ Pk(K), ∀K ∈ T } ⊂ H1
0 (Ω)

be the finite element subspace, where Pk is the space containing all polynomials
of degree k. The finite element approximation to the solution u ∈ H1

0 (Ω) of (3) is
given by the finite element method (FEM),

uh ∈ Sh, a(uh, vh) = f(vh), ∀vh ∈ Sh,

where f(vh) =
∫
Ω

fvhdx. It is well known that

(4) ‖u− uh‖H1(Ω) ≤ Chk‖u‖Hk+1(Ω).

Note that a(uh, vh) and f(vh) contain definite integrals that are computed nu-
merically. Consequently, the FEM with numerical integration is given by

(5) u∗h ∈ Sh, a∗(u∗h, vh) = f∗(vh), ∀vh ∈ Sh,

where

a∗(u, v) =
∑

K∈T

L∑

l=1

ω
(1)
l,K

n∑

i,j=1

[
aij

∂u

∂xi

∂v

∂xj

]
(b(1)

l,K), f∗(v) =
∑

K∈T

L∑

l=1

ω
(0)
l,K [fv](b(0)

l,K).

The two sets {ω(1)
l,K , b

(1)
l,K}L

l=1 and {ω(0)
l,K , b

(0)
l,K}L

l=1 determine two quadrature rules
(possibly different), on the triangle K ∈ T .

We define the error functionals,

E
(i)
K (ϕ) =

∫

K

ϕ(x)dx−
L∑

l=1

ω
(i)
l,Kϕ(b(i)

l,K), i = 0, 1.
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Let FK : K̂ → K, FK(x̂) := BK x̂ + bK , be the affine mapping that maps the
reference element K̂ onto K. Then the error functional on the reference element K̂
is,

Ê(i)(ϕ̂) :=
∫

K̂

ϕ̂(x̂)dx̂−
L∑

l=1

ω̂
(i)

l,K̂
ϕ̂(b̂(i)

l,K̂
),

where b
(i)
l,K = FK(b̂(i)

l,K̂
), ω

(i)
l,K = det(BK)ω̂(i)

l,K̂
, and ϕ̂(x̂) = ϕ(x) for any x = FK(x̂),

x̂ ∈ K̂. Note that the sets {ω̂(i)

l,K̂
, b̂

(i)

l,K̂
}L

l=1, i = 0, 1, define numerical quadrature

rules (possibly different) on the reference element K̂. Thus, by the standard scaling
argument, it is clear that

E
(i)
K (ϕ) = det(BK)Ê(i)(ϕ̂).

We define the algebraic precision of a quadrature rule to be m, if the rule is exact
on all polynomials of degree ≤ m. Throughout this paper we will assume that the
algebraic precision of the quadrature rules given by {ω̂(i)

l,K̂
, b̂

(i)

l,K̂
}L

l=1, i = 0, 1 is

2k − 1, i.e., Ê(i)(ϕ̂) = 0, ∀ϕ̂ ∈ P2k−1.
We now state a result similar to the Theorem 4.1.6 in [9] that we will use later.

Theorem 2.1. Suppose Ê(i)(ϕ̂) = 0 ∀ ϕ̂ ∈ P2k−1(K̂) and let aij ∈ W k,∞(Ω) and
f ∈ Hk+1(Ω). If u ∈ Hk+1(Ω), then for n = 1, 2, 3 we have

(6) ‖u− u∗h‖H1(Ω) ≤ Chk
( n∑

i,j=1

‖aij‖W k,∞(Ω)‖u‖Hk+1(Ω) + ‖f‖Hk+1(Ω)

)

where the constant C is independent of u and h, but may depend on k.

The proof of this result can be obtained by following the arguments of the proof
of Theorem 4.1.6 in [9] and we do not give the proof in this paper. We note that
this result can be extended for n ≥ 4 provided f ∈ W k+1,q(Ω) with a suitable q ≥ 2
depending on k and n.

The linear functionals: Let G : H1
0 (Ω) → R be a bounded linear functional on

H1
0 (Ω). We are interested in approximating the quantity of interest, G(u), where u

is the solution of equation (3).
Recall that ‖ · ‖a is equivalent to ‖ · ‖H1(Ω) for any function in H1

0 (Ω). Then, by
the Riesz representation theorem, there exists a unique g ∈ H1

0 (Ω), such that

G(v) = a(v, g), ∀v ∈ H1
0 (Ω).(7)

We approximate G(u) with G(uh), and the associated error bound is given in the
following lemma.

Lemma 2.2. Suppose that g ∈ Hs+2(Ω), 0 ≤ s ≤ k − 1, and let u ∈ Hk+1(Ω).
Then, there is a constant C > 0 independent of g, u, and the mesh size h, such
that

|G(u)−G(uh)| ≤ Chk+s+1‖g‖Hs+2(Ω)‖u‖Hk+1(Ω).(8)

Proof. Let gh ∈ Sh be the projection of g with respect to a(·, ·), namely,

a(g − gh, vh) = 0, ∀vh ∈ Sh.(9)
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Now using the Galerkin orthogonality a(u − uh, v) = 0 for all v ∈ Sh, the bound-
edness of a(·, ·), a standard approximation result, and (4), we get

|G(u)−G(uh)| = |a(g, u− uh)| = |a(g − gh, u− uh)|
≤ C‖g − gh‖H1(Ω)‖u− uh‖H1(Ω)

≤ Chk+s+1‖g‖Hs+2(Ω)‖u‖Hk+1(Ω),

which is the desired result. ¤
Remark 2.3. It is clear from (8) in Lemma 2.2 that when s = k − 1, i.e., when
g ∈ Hk+1(Ω), we have

|G(u)−G(uh)| ≤ Ch2k‖g‖Hk+1(Ω)‖u‖Hk+1(Ω).

This is the optimal order of convergence that can be obtained for the error in
computing G(u) by G(uh), where uh is the finite element solution based on piecewise
polynomials of degree k and u ∈ Hk+1(Ω).

Remark 2.4. The result (8) of Lemma 2.2 also holds for problems with other bound-
ary conditions (e.g., Robin boundary conditions), as long as the associated bilinear
form a(·, ·) induces an equivalent norm ‖ · ‖a on a subspace V ⊂ H1(Ω), G : V → R
is a bounded linear functional, and Sh ⊂ V . For the problem (2), V = H1

0 (Ω).

Remark 2.5. As mentioned in the introduction, often a quantity of interest F (u) is
finite, but F : V → R is not a bounded linear functional on V . In such situations,
F (u) is written in terms of a bounded linear functional G(u) on V , and F (u) is
approximated by a quantity Fuh

such that |F (u)−Fuh
| ≈ |G(u)−G(uh)| (see [4]).

Let g ∈ V be the unique solution of a(v, g) = G(v), ∀ v ∈ V . Then it is clear from
(8) of Lemma 2.2 that

|F (u)− Fuh
| = O(hk+s+1),

provided u ∈ Hk+1(Ω) and g ∈ Hs+2(Ω), 0 ≤ s ≤ k − 1. In Section 4, we
will consider a particular quantity of interest F (u), where F (·) is not a bounded
functional on V .

3. The effect of numerical integration

In almost all finite element computations, numerical integration is unavoidable.
Consequently, u∗h instead of uh is available, and G(u) is approximated by G(u∗h).
We shall concentrate on estimating |G(u) − G(u∗h)| in this section, and start with
the following Strang-type lemma.

Lemma 3.1. Let u∗h ∈ Sh be the finite element solution with numerical integration,
given in (5). Let G, g, a∗(·, ·), and f∗(·) be defined as in the last section. Then,

(10) G(u)−G(u∗h) = a(g − gh, u− uh) + f(gh)− f∗(gh) + a∗(u∗h, gh)− a(u∗h, gh),

where gh ∈ Sh is the projection of g onto Sh, given by a(g − gh, vh) = 0, ∀v ∈ Sh.

Proof. Recall uh ∈ Sh is the finite element solution with exact integration. We first
note that

G(u)−G(u∗h) = a(g, u− u∗h) = a(g, u− uh) + a(g, uh − u∗h)
= a(g − gh, u− uh) + a(g, uh − u∗h),(11)

where we used the well-known fact that uh is the projection of u on Sh with respect
to a(·, ·).
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Now, using the definition of gh and (5), we have

a(g, uh − u∗h) = a(gh, uh − u∗h) = a(gh, uh)− a(gh, u∗h)
= f(gh)− a(gh, u∗h)
= f(gh)− f∗(gh) + f∗(gh)− a(gh, u∗h)
= f(gh)− f∗(gh) + a∗(u∗h, gh)− a(u∗h, gh).

Combining the above with (11) completes the proof. ¤

It is clear from Lemma 3.1, that the effect of numerical integration on the ap-
proximation of G(u), i.e., on the error G(u) − G(u∗h), depends on f(gh) − f∗(gh)
and a∗(u∗h, gh)− a(u∗h, gh). In fact, if the integration is exact, these differences are
zeros. To estimate these terms, we need the following two lemmas.

We now present the first result towards estimating the terms in (10). This result
is similar to Lemma 6.2 in [6], where the analysis was given for the one-dimensional
case; we prove it here for higher dimensions.

Lemma 3.2. Suppose Ê(0)(χ̂) = 0, ∀χ̂ ∈ P2k−1(K̂) and let 0 ≤ s ≤ k − 1. Then,
for 1 ≤ n ≤ 3,

|E(0)
K (fφ)| ≤ Chk+s+1‖f‖Hk+s+1(K)‖φ‖Hs+2(K), ∀φ ∈ Pk(K),

where the constant C is independent of h and K, but may depend on k.

Proof. We first prove it for k > 1. Let Π̂ be the L2-projection onto Ps+1(K̂). We
write

Ê(0)(f̂ φ̂) = Ê(0)(f̂Π̂φ̂) + Ê(0)(f̂ φ̂− f̂Π̂φ̂).(12)

Since k + s + 1 ≥ k + 1 > n/2, we use Sobolev’s inequality (see 1.4.6 in [8]) to get

|Ê(0)(f̂Π̂φ̂)| ≤ C‖f̂Π̂φ̂‖L∞(K̂) ≤ C‖f̂Π̂φ̂‖Hk+s+1(K̂).

We recall that Ê(0)(χ̂) = 0, ∀χ̂ ∈ Pk+s(K̂). Therefore,

|Ê(0)(f̂Π̂φ̂)| ≤ C|f̂Π̂φ̂|Hk+s+1(K̂) ≤ C

s+1∑

i=0

|f̂ |Hk+s+1−i(K̂)|Π̂φ̂|W i,∞(K̂)

≤ C

s+1∑

i=0

|f̂ |Hk+s+1−i(K̂)|Π̂φ̂|Hi(K̂),(13)

where we used the Bramble-Hilbert Lemma and the equivalence of norms on finite
dimensional spaces. Since Π̂v = v, ∀ v ∈ Pi−1(K̂), 1 ≤ i ≤ s + 1, by the inverse
inequality and the Bramble-Hilbert Lemma, we get

|φ̂− Π̂φ̂|Hi(K̂) ≤ C‖φ̂− Π̂φ̂‖L2(K̂) ≤ C|φ̂|Hi(K̂),

where C may depend on k. Therefore,

|Π̂φ̂|Hi(K̂) ≤ C|φ̂|Hi(K̂) + |φ̂− Π̂φ̂|Hi(K̂) ≤ C|φ̂|Hi(K̂).
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Also since Π̂ is the L2-projection, the above inequality is true for i = 0. Thus from
(13) and using a standard scaling argument, we obtain

|Ê(0)(f̂Π̂φ̂)| ≤ C

s+1∑

i=0

|f̂ |Hk+s+1−i(K̂)|φ̂|Hi(K̂)

≤ C det(BK)−1hk+s+1
s+1∑

i=0

|f |Hk+s+1−i(K)|φ|Hi(K)

≤ C det(BK)−1hk+s+1‖f‖Hk+s+1(K)‖φ‖Hs+1(K).(14)

We now estimate the term Ê(0)(f̂ φ̂ − f̂Π̂φ̂) in (12). Note that f̂ φ̂ − f̂Π̂φ̂ = 0
if s = k − 1. So assume 0 ≤ s < k − 1. Since k > n/2, again using the Sobolev
inequality, we obtain

|Ê(0)(f̂ φ̂− f̂Π̂φ̂)| ≤ C‖f̂ φ̂− f̂Π̂φ̂‖L∞(K̂) ≤ C‖f̂‖L∞(K̂)‖φ̂− Π̂φ̂‖L∞(K̂)

≤ C‖f̂‖Hk(K̂)‖φ̂− Π̂φ̂‖L∞(K̂).

Hence, for a fixed φ̂ ∈ Pk(K̂), the linear functional Hk(K̂) 3 f̂ 7→ Ê(0)(f̂ φ̂ −
f̂Π̂φ̂) is bounded and vanishes over the space Pk−1(K̂). Now using the Bramble-
Hilbert Lemma, the equivalence of norms on finite dimensional spaces, the scaling
argument, and the fact that Π̂ leaves Ps+1(K̂) invariant, we obtain

|Ê(0)(f̂ φ̂− f̂Π̂φ̂)| ≤ C|f̂ |Hk(K̂)‖φ̂− Π̂φ̂‖L2(K̂) ≤ C|f̂ |Hk(K̂)|φ̂|Hs+2(K̂)

≤ C det(BK)−1hk+s+2|f |Hk(K)|φ|Hs+2(K)(15)

Finally combining (12), (14), and (15), we have

|E(0)
K (fφ)| = | det(BK)Ê(0)(f̂ φ̂)| ≤ Chk+s+1‖f‖Hk+s+1(K)‖φ‖Hs+2(K),

which completes the proof for k > 1.
The proof for k = 1 does not use the projection Π̂ and is simpler. We omit the

proof for k = 1. ¤
Remark 3.3. The result in Lemma 3.2 has been obtained for 1 ≤ n ≤ 3. A similar
result could be obtained for n ≥ 4 provided f ∈ W k+s+1,q(K), where q > 2 is a
real number satisfying k > n/q. We do not prove the result in this paper.

We now state the next result, which is similar to Lemma 6.1 in [6] (it was also
proved for the one-dimensional case). We do not give a proof as it could be obtained
by following exactly the arguments in the proof of Lemma 6.1 in [6].

Lemma 3.4. Suppose Ê(1)(χ̂) = 0, ∀χ̂ ∈ P2k−1(K̂) and for 0 ≤ s ≤ k − 1, let
a(x) ∈ W k+s+1,∞(Ω). Then,

|E(1)
K (aϕφ)| ≤ Chk+s+1‖a‖W k+s+1,∞(Ω)‖ϕ‖Hk(K)‖φ‖Hs+1(K), ∀ϕ, φ ∈ Pk(K),

where the constant C is independent of K.

Remark 3.5. We note that in Lemma 6.1 of [6], it was assumed that a(x) ∈
W 2k,∞(Ω). A careful reading of the proof of Lemma 6.1 of [6] reveals that a(x) ∈
W k+s+1,∞(Ω), 0 ≤ s ≤ k−1, is only needed; we have used this assumption on a(x)
in the above Lemma 3.4.

With Lemma 3.1, 3.2 and 3.4, we are now ready to give the upper bound of
|G(u)−G(u∗h)| in the following theorem.
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Theorem 3.6. Suppose Ê(i)(χ̂) = 0, ∀χ ∈ P2k−1(K̂), i = 0, 1. For 0 ≤ s ≤ k − 1,
let f ∈ Hk+s+1(Ω), g ∈ Hs+2(Ω), and aij ∈ W k+s+1,∞(Ω). Then for 1 ≤ n ≤ 3,
we have

|G(u)−G(u∗h)| ≤ Chk+s+1(‖u‖Hk+1(Ω) + ‖f‖Hk+s+1(Ω))‖g‖Hs+2(Ω),(16)

where the constant C does not depend on the mesh size h. In particular, for s =
k − 1, we have

|G(u)−G(u∗h)| ≤ Ch2k(‖u‖Hk+1(Ω) + ‖f‖H2k(Ω))‖g‖Hk+1(Ω).(17)

Proof. We first note from Lemma 3.1 that

G(u)−G(u∗h) = a(g − gh, u− uh) + f(gh)− f∗(gh) + a∗(u∗h, gh)− a(u∗h, gh),(18)

where gh ∈ Sh satisfies a(g − gh, vh) = 0, ∀ vh ∈ Sh. It is clear from (4) and a
approximation result that

|a(g − gh, u− uh)| ≤ C‖g − gh‖H1(Ω)‖u− uh‖H1(Ω)

≤ Chk+s+1‖g‖Hs+2(Ω)‖u‖Hk+1(Ω).(19)

We will now obtain upper bounds for |f(gh)−f∗(gh)| and |a∗(u∗h, gh)−a(u∗h, gh)|.
For v ∈ L2(Ω) such that v ∈ Hi(K), for all K ∈ T , 0 ≤ i ≤ k, we define

‖v‖i,T := (
∑

K∈T
‖v‖2Hi(K))

1/2, i = 0, 1, . . . , k.

Thus from Lemma 3.2, we get

|f(gh)− f∗(gh)| ≤
∑

K∈T
|E(0)

K (f gh)|

≤ Chk+s+1
∑

K∈T
‖f‖Hk+s+1(K)‖gh‖Hs+2(K)

≤ Chk+s+1‖f‖Hk+s+1(Ω)‖gh‖s+2,T .(20)

Let Ihv ∈ Sh be the Sh-interpolant of v ∈ Hs+2(Ω). Then it is well known (see
[9]) that

(21) ‖v − Ihv‖i,T ≤ Chs+2−i‖v‖Hs+2(Ω), i = 0, 1, . . . , s + 2.

Therefore from the triangle inequality, the inverse inequality, and a standard ap-
proximation result, we have

‖gh‖s+2,T ≤ ‖g‖Hs+2(Ω) + ‖g − Ihg‖s+2,T + ‖Ihg − gh‖s+2,T

≤ C‖g‖Hs+2(Ω) + Ch−(s+1)‖Ihg − gh‖1,T )

≤ C‖g‖Hs+2(Ω) + Ch−(s+1)(‖Ihg − g‖H1(Ω) + ‖g − gh‖H1(Ω))
≤ C‖g‖Hs+2(Ω).

Hence from (20), we get

|f(gh)− f∗(gh)| ≤ Chk+s+1‖f‖Hk+s+1(Ω)‖g‖Hs+2(Ω).(22)

For the last term |a∗(u∗h, gh) − a(u∗h, gh)|, we use Lemma 3.4 and follow the
argument leading to (20) to get

|a∗(u∗h, gh)− a(u∗h, gh)|

≤ Chk+s+1
n∑

i,j=1

‖ai,j‖W k+s+1,∞(Ω)‖u∗h‖k+1,T ‖gh‖s+2,T .(23)
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Again by the triangle inequality, the inverse inequality, (21) with v = u, s = k− 1,
and (6), we obtain

‖u∗h‖k+1,T ≤ ‖u‖Hk+1(Ω) + ‖u− Ihu‖k+1,T + ‖Ihu− u∗h‖k+1,T

≤ C‖u‖Hk+1(Ω) + Ch−k‖Ihu− u∗h‖1,T

≤ C‖u‖Hk+1(Ω) + Ch−k(‖Ihu− u‖H1(Ω) + ‖u− u∗h‖H1(Ω))

≤ C(
n∑

i,j=1

‖aij‖W k,∞(Ω)‖u‖Hk+1(Ω) + ‖f‖Hk+1(Ω)).

Hence from (23) we have,

|a∗(u∗h, gh)− a(u∗h, gh)|

≤ Chk+s+1[
n∑

i,j=1

‖aij‖W k+s+1,∞(Ω)]
( n∑

i,j=1

‖aij‖W k,∞(Ω)‖u‖Hk+1(Ω)(24)

+‖f‖Hk+1(Ω)

)
‖g‖Hs+2(Ω).

Finally, combining (18), (19), (22), and (24), we obtain

|G(u)−G(u∗h)|
≤ Chk+s+1

[
‖g‖Hs+2(Ω)‖u‖Hk+1(Ω) + ‖f‖Hk+s+1(Ω)‖g‖Hs+2(Ω)

+(
n∑

i,j=1

‖aij‖W k+s+1,∞(Ω))
( n∑

i,j=1

‖aij‖W k,∞(Ω)‖u‖Hk+1(Ω)

+‖f‖Hk+1(Ω)

)
‖g‖Hs+2(Ω)

]

≤ Chk+s+1(‖u‖Hk+1(Ω) + ‖f‖Hk+s+1(Ω))‖g‖Hs+2(Ω),

which is the desired result. ¤

Remark 3.7. We note that we get the optimal order of convergence (17) under an
increased regularity requirement on the data, i.e., f ∈ H2k(Ω) ∩ C0(Ω) and aij ∈
W 2k,∞(Ω); this increased regularity is not necessary to obtain (8) – an optimal-
order error estimate with exact integration.

Remark 3.8. It is well known that to obtain the optimal order of convergence of the
H1-norm of the error in the finite element solution under numerical integration, one
needs an increased regularity of the data, namely, aij ∈ W k,∞(Ω) and f ∈ Hk(Ω)∩
C0(Ω) for 1 ≤ n ≤ 3 (see [9]). Moreover, the algebraic precision of the numerical
integration rule is required to be 2k−2. In a standard finite element software, often
the algebraic precision of the numerical quadrature is 2k − 1, which is the same
as the assumption used in Theorem 3.6. In Theorem 3.6, however, we required
a higher regularity of the data, i.e., aij ∈ W 2k,∞(Ω) and f ∈ H2k(Ω) ∩ C0(Ω)
for the optimal order of convergence of G(u∗h). Thus, the error in approximating
linear functionals may be more sensitive to numerical integration than the error (in
H1-norm) in the finite element solution, when the data is not sufficiently smooth.

Remark 3.9. The result of Theorem 3.6 also holds when the exact solution u sat-
isfies other boundary conditions, provided the functions in Sh satisfy the essential
boundary conditions (see Remark 2.4).
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4. A lower bound on the error in approximating functionals

In this section, our main goal is to show that the smoothness assumption on
the data of the problem (see Theorem 3.6) is necessary, in general, to obtain the
optimal order of convergence of the computed quantity of interest. Also in this
section, we will consider a quantity of interest F (u), which is finite but F (·) is not
a bounded linear functional on the energy space. We will first write F (u) in terms
of a bounded linear functional G(u) and use the results in Section 3 to obtain an
upper bound of the error in the computed quantity of interest, when the data has
enough smoothness. We will then obtain a lower bound of the error in computed
quantity of interest for a particular problem. This result will indicate that the
increased regularity of the data is, in general, necessary to obtain the optimal order
of convergence of the computed quantity of interest.

Consider the one-dimensional problem on Ω = (0, 1) with the Robin boundary
condition

(25)
{ −u′′(x) = f(x) x ∈ Ω,

u(0) = 0, u(1) + u′(1) = 0,

Suppose we want to approximate the quantity of interest F (u) = u′(0).
The variational formulation of (25) is given by

(26)
{

u ∈ H1
D := {v ∈ H1(Ω), v(0) = 0},

a(u, v) :=
∫ 1

0
u′v′dx + u(1)v(1) =

∫ 1

0
fvdx, ∀v ∈ H1

D,

where we assume that f ∈ L2(Ω). Since a(·, ·) is coercive and bounded, it is
immediate that ‖v‖a :=

√
a(v, v) is an equivalent norm in H1

D with the inner
product a(·, ·).

We first note that F (u) = u′(0) is finite, but F (·) is not a bounded linear
functional on H1

D, and therefore we cannot use the framework developed in Section
3. Moreover, F (uh) may give less accurate approximation of F (u), where uh is the
finite element solution (see Remark 4.1). To address this issue (see Section 6.2 in
[4]), we choose a function ψ ∈ H1(Ω), such that ψ(0) = 1 and ψ(1) = 0. Then
using integration by parts, we have F (u) =

∫ 1

0
fψ dx− ∫ 1

0
ψ′u′dx. Let

G(u) :=
∫ 1

0

ψ′u′dx.

The functional G(·), which depends on ψ, is bounded on H1
D. We write

F (u) =
∫ 1

0

fψ dx−G(u).(27)

Note that this expression of F (u) is meaningful, since f ∈ L2(Ω). Furthermore,
F (u) can be written in this form for any ψ ∈ H1(Ω) with ψ(0) = 1 and ψ(1) = 0.
We consider a particular ψ given by

ψ(x) := 1− x + ε sin(πx),(28)

for a fixed 0 < ε ≤ 1. In fact, we could have considered ε = 0 in the definition of
ψ(x), but we chose ε > 0 to show a particular feature at the end of this section.

We further note that by the Riesz representation theorem, there exists a unique
g ∈ H1

D such that

a(v, g) = G(v), ∀v ∈ H1
D.(29)



12 I. BABUŠKA, U. BANERJEE, AND H. LI

An easy calculation using integration by parts yields

g(x) = ε sin(πx)− 0.5x ∈ H3(Ω).

To approximate the solution of (26), we consider the points xj = jh, j =
0, 1, · · · , n, where n is a natural number and h = 1/n. Let Sh ⊂ H1

D be the
piecewise quadratic (k = 2) finite element space with uniform mesh of size h. The
FEM to approximate the solution u ∈ H1

D of (26) is given by

(30) uh ∈ Sh, a(uh, vh) =
∫ 1

0

fvhdx, ∀vh ∈ Sh.

We define the quantity

(31) Fuh
:=

∫ 1

0

fψ dx−G(uh).

If
∫ 1

0
fψ dx is computed exactly, then the quantity of interest F (u) can be approx-

imated by Fuh
and from (27), we get F (u) − Fuh

= G(u) − G(uh). If u ∈ H3(Ω),
then from (8) of Lemma 2.2 with k = 2 and s = k − 1 = 1, we get

(32) |F (u)− Fuh
| = |G(u)−G(uh)| ≤ Ch4‖g‖H3(Ω)‖u‖H3(Ω).

But uh is often not available, as the integrals in (30) are computed by numerical
integration, and therefore we cannot compute Fuh

to approximate F (u).
We use the 2-point Gaussian quadrature, determined by the set {ωl,i, bl,i}2l=1,

on the interval (xi−1, xi), i = 1, 2, · · · , n, to approximate the integrals in (30).
This quadrature rule is exact for polynomials of degree 2k − 1 = 3, as required in
Theorem 3.6. The FEM under numerical integration is given by

(33) u∗h ∈ Sh, a(u∗h, vh) = f∗(vh), ∀vh ∈ Sh,

where

f∗(v) =
n∑

i=1

2∑

l=1

ωl,if(bl,i)v(bl,i).

We note that with the 2-point Gaussian quadrature, we have a∗(u, v) = a(u, v) for
all u, v ∈ Sh.

We approximate F (u) by the quantity

(34) Fu∗h :=
∫ 1

0

fψ dx−G(u∗h).

If
∫ 1

0
fψ dx is computed exactly, then from (27) we get

(35) F (u)− Fu∗h = G(u)−G(u∗h).

Suppose f ∈ H4(Ω). Then from (17) of Theorem 3.6 (considering k = 2 and
s = k − 1 = 1), we have

(36) |F (u)− Fu∗h | = |G(u)−G(u∗h)| ≤ Ch4(‖u‖H3(Ω) + ‖f‖H4(Ω))‖g‖H3(Ω).

We note however that in practice, the definite integral
∫ 1

0
fψ dx in (34) is also com-

puted by numerical integration. Therefore this definite integral has to be computed
accurately to obtain |F (u)− Fu∗h | = O(h4).
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Remark 4.1. It is possible to approximate F (u) directly without using the func-
tion ψ(x) as in (31). In particular, F (u) = u′(0) in our example could be well
approximated by directly evaluating F (uh) = u′h(0) (assuming exact integration),
as it is well known (see [14, 16]) that |F (u)− F (uh)| ≤ ‖u− uh‖W 1,∞(Ω) = O(hk).
But computing F (uh) in terms of the function ψ(x) as in (31) enables us to to get
|F (u) − F (uh)| = O(h2k) = ‖u − uh‖2H1(Ω). We mention however that computing
F (uh) using (31) (or F (u∗h) using (34)) is costlier than a direct computation, since
an appropriate ψ(x) has to chosen and the integrals

∫ 1

0
fψ dx and G(uh) (or G(u∗h))

have to be computed accurately. On the other hand, computing F (uh) using (31)
(or F (u∗h) using (34)) will allow the use of a coarser mesh to approximate F (u)
within a given tolerance.

Remark 4.2. In many problems F (u) could be infinite and thus meaningless, e.g.,
say when F (u) is the value of the stresses at a re-entrant corner in the elasticity
problem. Thus |F (u)−F (u∗h)| is meaningless and any conclusion based on the value
of Fu∗h (which could be finite) could be misleading.

We will now obtain a lower bound of the error |F (u) − Fu∗h | for a particular
problem, where the data does not have the increased regularity assumed in Theorem
3.6. This result will indicate that the increased regularity assumption on the data
in Theorem 3.6 may be necessary to obtain (17). We consider a particular problem
(25) with

(37) f(x) = (1− x)5/3.

Clearly, f ∈ H2(Ω), but f /∈ H3(Ω). Thus f has less regularity than required in
Theorem 3.6 with k = 2 and s = k − 1 = 1, and |F (u) − Fu∗h | may not have the
optimal order of convergence O(h4) in contrast to (36) (see also Remarks 3.7 and
3.8). We note however that the regularity f ∈ H2(Ω) is sufficient to obtain the
optimal order of convergence, O(h2), for ‖u− u∗h‖H1(Ω) (see [9]).

To analyze the error G(u)−G(u∗h), and consequently the error F (u)− Fu∗h (see
(35)), we first consider the projection gh ∈ Sh of g given by

a(g − gh, vh) = 0, ∀vh ∈ Sh.(38)

Since gh ∈ Sh, it is piecewise quadratic and can be written as

gh(x) =
n∑

i=1

[
ciφi(x) + biBi(x)

]
,(39)

where φi(x) is the usual “hat function” centered at xi, and Bi(x) =
√

6h−2(x −
xi−1)(x−xi) is the quadratic “bubble function” on the interval (xi−1, xi). It is well
known (in one-dimension) that ci = gh(xi) = g(xi), and therefore

gh(x) =
g(xi)− g(xi−1)

h
(x− xi−1) + g(xi−1) + biBi(x), x ∈ (xi−1, xi).(40)

Remark 4.3. We note that if we define ψ in (28) with ε = 0, then g(x) = −0.5x
and consequently, gh = g.

In the following lemma, we estimate the constant bi in (40). The proof is simple
and we give a brief sketch of the proof.
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Lemma 4.4. Let gh(x) =
∑n

i=1

[
ciφi(x) + biBi(x)

]
be the projection of g onto Sh

given by (38). Then,

bi =

∫ xi

xi−1
ψ′B′

idx
∫ xi

xi−1
(B′

i)2dx
= −π2

√
6

12
εh2 sin(

π

2
(xi−1 + xi)) +O(εh4).

Proof. We first note that with v = Bi in (29) and using (40), we get
∫ 1

0

ψ′B′
idx = a(g, Bi) = a(gh, Bi) = bi

∫ xi

xi−1

[B′
i]

2dx

Now directly computing
∫ 1

0
ψ′B′

idx and
∫ xi

xi−1
[B′

i]
2dx, and using the Taylor’s theo-

rem, we get the desired result. ¤

We are now ready to provide a lower bound of |G(u)−G(u∗h)|.
Theorem 4.5. Let u be the solution of (26) with f as in (37), and let u∗h be the
solution of (33) with k = 2. Then there exists a constant C > 0 such that

|G(u)−G(u∗h)| ≥ 0.25
27

Cgh
8/3 + Ch11/3.

where Cg > 0 is a constant depending on the numerical integration rule.

Proof. Since a∗(u, v) = a(u, v), ∀ u, v ∈ Sh, using Lemma 3.1, we have

|G(u)−G(u∗h)| ≥
∣∣|f(gh)− f∗(gh)| − |a(g − gh, u− uh)|

∣∣,(41)

where a(·, ·) is as defined in (26). We first address the term |f(gh)− f∗(gh)|.
We recall that gh is piecewise quadratic. Therefore, by the standard error formula

for the 2-point Gaussian quadrature, there is ξi ∈ (xi−1, xi), such that

f(gh)− f∗(gh) =
n∑

i=1

(
∫ xi

xi−1

[fgh]dx−
2∑

l=1

ωi,l[fgh](bi,l)) = Cgh
5

n∑

i=1

[fgh](4)(ξi)

= Cgh
5

n∑

i=1

{
[f (4)gh](ξi) + 4[f (3)g′h](ξi) + 6[f (2)g

(2)
h ](ξi)

}

= Cgh
5

n∑

i=1

[40
81

(1− ξi)−7/3gh(ξi) +
40
27

(1− ξi)−4/3g′h(ξi)(42)

+
20
3

(1− ξi)−1/3g′′h(ξi)
]

:= S1 + S2 + S3,

where Cg > 0 is a fixed constant depending on the numerical integration. Also,
S1, S2, S3 are defined as the first, second, and the third term in (42), respectively.

We first estimate the term S1 in (42). Recall that gh(xi) = g(xi), and note that
for the bubble function Bi(xi−1) = Bi(xi) = 0. Thus, from the definition of gh in
(40), we have

gh(ξi) =
[g(xi)− g(xi−1)

h
(ξi − xi−1) + g(xi−1) + biBi(ξi)

]
.(43)

Recall g(x) = ε sin(πx)− 0.5x. It is easy to show using Taylor’s theorem that

|g(xi)− g(xi−1)
h

(ξi − xi−1)| ≤ h|επ cos(
π

2
(xi−1 + xi))− 0.5 +O(εh2)| ≤ C1h.(44)
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Moreover, using Lemma 4.4 and noting that |Bi(ξi)| <
√

6, we get

|biBi(ξi)| ≤ |π
2

2
ε sin(

π

2
(xi−1 + xi)) +O(εh2)|h2 ≤ C2h

2.(45)

We will now find upper bounds for the term g(xi−1) in (43) for 1 ≤ i ≤ [
7n
8

]− 1
and

[
7n
8

] ≤ i ≤ n, where [x] denotes the largest integer that is less than or equal
to x. We first note that g(x) < 1 for 0 ≤ x ≤ 1 and for all 0 < ε ≤ 1; consequently

(46) g(xi−1) < 1, for 1 ≤ i ≤ [7n

8
]− 1.

Furthermore, an easy calculation shows that for all 0 < ε ≤ 1, g(x) < −0.035 for
0.87 ≤ x ≤ 1. Since, for h small (in fact h < 0.0025), xi−1 > 0.87 for i ≥ [

7n
8

]
, it

is clear that

(47) g(xi−1) < −0.035, for
[7n

8
] ≤ i ≤ n.

Therefore, for 1 ≤ i ≤ [7n/8]− 1 and h small, using (44), (45) and (46) in (43), we
have

(48) gh(ξi) ≤ 1 + C1h + C2h
2 ≤ 2.

Similarly for i ≥ [7n/8] and h small, using (44), (45) and (47) in (43), we get

(49) gh(ξi) ≤ −0.035 + C1h + C2h
2 ≤ −0.025.

We next note that the function (1 − x)−7/3 is positive and increasing on (0, 1).
Therefore, recalling that xi−1 ≤ ξi ≤ xi, we easily see that for h small,

h5

[7n/8]−1∑

i=1

(1− ξi)−7/3 ≤ h4

∫ 7/8

0

(1− x)−7/3dx =
3
4
h4(84/3 − 1),(50)

and

h5
n∑

i=[7n/8]

(1− ξi)−7/3 ≥ h4

∫ 1−h

7/8

(1− x)−7/3dx =
3
4
h4(h−4/3 − 84/3).(51)

We now split the summation in S1 (see (42)) and use (48), (49), (50), (51), to
get

S1 =
40
81

Cgh
5
[ [7n/8]−1∑

i=1

(1− ξi)−7/3gh(ξi) +
n∑

i=[7n/8]

(1− ξi)−7/3gh(ξi)
]

≤ 40
81

Cgh
5
[
2

[7n/8]−1∑

i=1

(1− ξi)−7/3 − 0.025
n∑

i=[7n/8]

(1− ξi)−7/3
]

≤ −0.25
27

Cgh
4(h−4/3 − 84/3) +

20
27

Cgh
4(84/3 − 1).(52)

We use similar arguments as above to to estimate the terms S2, S3 in (42). For
all 0 < ε ≤ 1 and h small, we get

S2 ≤ −20
9

Cgh
4(h−1/3 − 81/3) +

140
9

Cgh
4(81/3 − 1)(53)

and

S2 ≤ −5Cgεh
5(8−2/3 − h2/3) + 10Cgh

4(1− 8−2/3).(54)
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Hence, combining (42), (52), (53), and (54), we conclude that, for h small, there
exists a constant C > 0 such that

f(gh)− f∗(gh) ≤ −0.25
27

Cgh
8/3 − Ch11/3.

Consequently,

|f(gh)− f∗(gh)| ≥ 0.25
27

Cgh
8/3 + Ch11/3.

Now, since

|a(g − gh, u− uh)| ≤ C‖g − gh‖H1(Ω)‖u− uh‖H1(Ω) ≤ Ch4‖g‖H3(Ω)‖u‖H3(Ω),

using (41) we conclude that there exists a constant C > 0, such that

|G(u)−G(u∗h)| ≥ ∣∣|f(gh)− f∗(gh)| − |a(g − gh, u− uh)|∣∣

≥ 0.25
27

Cgh
8/3 + Ch11/3,

which completes the proof of the desired result. ¤

We recall the definition of Fu∗h in (34), and we assume that the definite integral∫ 1

0
fψ dx is evaluated exactly. We approximate the quantity of interest F (u) by

Fu∗h . A lower bound of the error |F (u) − Fu∗h | is easily obtained using (35) and
Theorem 4.5, which we state below.

Theorem 4.6. Let u be the solution of (25) with f(x) = (1 − x)5/3, and u∗h be
the finite element solution (k = 2) obtained with the 2-point Gaussian quadrature.
Suppose the integral

∫ 1

0
fψ dx in the definition of Fu∗h is computed exactly. Then,

for the quantity of interest F (u) = u′(0), there exists a constant C > 0 such that

|F (u)− Fu∗h | = |G(u)−G(u∗h)| ≥ 0.25
27

Cgh
8/3 + Ch11/3,

for h small, where the constant Cg > 0 depends on the 2-point Gaussian quadrature.

Remark 4.7. If we choose f(x) = (1− x)2/3 in our example (25), then f ∈ H1(Ω)
but f /∈ H2(Ω). Using the FEM with k = 1 and 1-point or the 2-point Gaussian
rule, we can show that |F (u) − Fu∗h | ≥ Ch5/3. For the FEM with k = 2, we can
also obtain the same lower bound |F (u)−Fu∗h | ≥ Ch5/3 with the 2-point Gaussian
rule. We do not present the analysis here, but will illuminate these results through
numerical examples presented in the next section.

Remark 4.8. We note that the use of the Gaussian quadrature with more integration
points will result into a smaller value of Cg, and thus the computed value of |G(u)−
G(u∗h)| will be smaller. More Gaussian points, however, will not increase the order
of convergence as h → 0. We show this in our examples in the next section.

We recall that g(x) = ε sin(πx) − 0.5x ∈ H3(Ω). Moreover, since f(x) = (1 −
x)5/3 ∈ H2(Ω), it is well known that u ∈ H4(Ω). Therefore (32) holds for our
particular problem, i.e., |F (u) − Fuh

| ≤ Ch4. Then, we can easily conclude from
Theorem 4.6, that the ratio

Rh(u) :=
|F (u)− Fu∗h |
|F (u)− Fuh

| =
|G(u)−G(u∗h)|
|G(u)−G(uh)| ≥ Ch−4/3 →∞, as h → 0.(55)

Thus the ratio Rh(u), which could be interpreted as a relative error in the computed
quantity of interest due to numerical integration, becomes unbounded as h → 0.
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In contrast, the ratio of ‖u − u∗h‖H1(Ω) to ‖u − uh‖H1(Ω) is bounded as h → 0.
We remark that a careful analysis with ε = 0 in (28) shows (in fact, the analysis
is simpler) that the results in Theorem 4.5 and Theorem 4.6 are still true (with
different constants). However, from the definition of g in (29) with ε = 0, we have

F (u)− Fuh
= G(u)−G(uh) = a(g, u− uh) = a(g − gh, u− uh) = 0,

since g = gh (see Remark 4.3). Therefore, we will not be able to draw a meaningful
conclusion about the ratio Rh(u) as h → 0. This is one of the reasons we used ε 6= 0
in (28).

5. Numerical illustrations

In this section, we will present numerical results that will illuminate the results
obtained in the last section. We will show that the optimal order of convergence
in the approximation of functionals, i.e., the quantities of interest, is not obtained
when the data do not have the increased regularity as specified in Theorem 3.6. We
will further show that over-integration may yield the optimal order of convergence,
at least in the pre-asymptotic range, i.e., when the mesh parameter h is not too
small.

We consider two boundary value problems, namely,

(56) −u′′ = (1− x)5/3 in Ω,
u(0) = 0, u(1) + u′(1) = 0,

and

(57) −u′′ = (1− x)2/3 in Ω,
u(0) = 0, u(1) + u′(1) = 0,

where Ω = (0, 1). We note that in (56), the data f(x) = (1 − x)5/3 ∈ H2(Ω),
whereas in (57), the data f(x) = (1 − x)2/3 ∈ H1(Ω) but /∈ H2(Ω). The goal in
both problems is to approximate the bounded linear functional G(u) =

∫ 1

0
ψ′u′ dx,

where ψ(x) = 1 − x + sin πx. We recall that the functional G(u) is related to the
functional F (u) = u′(0) as discussed in the last section.

In this section, we will consider the finite element method with nodes xj = jh,
0 ≤ j ≤ n, with nh = 1, as described in the last section. We will denote the
finite element solution with numerical integration by u∗h,`, where the integrals in
the load vector are computed by the `-point Gaussian integration rule. The order
of convergence of u∗h,`, for a fixed `, will be approximated by, rate = ln(|en/e2n|)

ln(2) ,

where en = |G(u)−G(u∗h,`)|, h = 1/n.
We first consider the problem (56). We computed the finite element solutions uh

and u∗h,1, with k = 1, to approximate the solution u of (56), where uh is computed
with exact integration. We note that the algebraic precision of 1-point Gauss rule
is 1, as required in Theorem 3.6 for k = 1. Also f has the increased regularity for
the case k = 1, i.e., f ∈ H2(Ω). We have presented the values of |G(u) − G(uh)|
and |G(u)−G(u∗h,1)| for several values of h in Table 1, where n = 1/h. We observe
the optimal order of convergence O(h2) for |G(u) − G(uh)| and |G(u) − G(u∗h,1)|,
which illuminates the results in Lemma 2.2 and Theorem 3.6 respectively.

We next computed the finite element solutions uh, u∗h,2 and u∗h,6, with k = 2, to
approximate the solution u of the same problem (56). We note that the algebraic
precision of the 2-point Gauss rule is 3, as required in Theorem 3.6 for k = 2.



18 I. BABUŠKA, U. BANERJEE, AND H. LI

n |G(u)−G(uh)| rate |G(u)−G(u∗h,1)| rate
10 1.833E-03 1.663E-03
20 4.569E-04 2.004 4.122E-04 2.012
40 1.142E-04 2.001 1.027E-04 2.005
80 2.853E-05 2.000 2.565E-05 2.002
160 7.133E-06 2.000 6.407E-06 2.001
320 1.783E-06 2.000 1.513E-06 2.001
640 4.458E-07 2.000 4.002E-07 2.000

Table 1: uh and u∗h,1 are piecewise linear (k = 1) finite element solutions with exact
integration and with 1-point Gaussian quadrature, respectively, approximating the
solution of (56). The data has the increased regularity for k = 1.

n |G(u)−G(uh)| rate |G(u)−G(u∗h,2)| rate |G(u)−G(u∗h,6)| rate
10 1.293E-06 4.264E-06 1.297E-06
20 8.124E-08 3.992 3.840E-07 3.473 8.188E-08 3.985
40 5.086E-09 3.998 4.110E-08 3.224 5.186E-09 3.981
80 3.180E-10 3.999 5.154E-09 2.995 3.337E-10 3.958
160 1.987E-11 4.000 7.209E-10 2.838 2.234E-11 3.901
320 1.194E-12 4.000 1.072E-10 2.750 1.581E-12 3.820

Table 2: uh, u∗h,2, and u∗h,6 are piecewise quadratic (k = 2) finite element solu-
tions with exact integration, with 2-point Gaussian quadrature, and with 6-point
Gaussian quadrature (over-integration), respectively, approximating the solution of
the problem (56). The data does not have the increased regularity for k = 2.

But the data f /∈ H4(Ω), and thus does not have the increased regularity required
in Theorem 3.6 for the case k = 2. We mention that u∗h,6 is the finite element
solution with “over-integration”. In Table 2, we presented the computed values of
|G(u)−G(uh)|, |G(u)−G(u∗h,2)| and |G(u)−G(u∗h,6)|.

1. We observe that |G(u) − G(uh)| converges with O(h4), which is optimal.
But |G(u)−G(u∗h,2)| is not converging with the optimal order. In fact, the
order of convergence is monotonically decreasing, and it appears that it is
getting closer to O(h8/3), which is the order of the lower bound of the error
given in Theorem 4.5.

2. We observe that the order of convergence of |G(u) − G(u∗h,6)| is approxi-
mately O(h4) initially for smaller values of n, but the convergence rate is
slowing down for larger values of n, i.e., for small h.

3. We observe that the values of |G(u)−G(u∗h,6)| are smaller than the values of
|G(u)−G(u∗h,2)|, as indicated in Remark 4.8. Thus, over-integration yields
smaller absolute values of the error, but does not affect the asymptotic
convergence rate.

We remark that for k = 2, the data f of the problem (56) has adequate regularity
for the optimal order of convergence of the finite element solution in the energy
norm (see Theorem 4.1.6 in [9]) and both ‖u−u∗h,2‖H1(Ω) and ‖u−u∗h,6‖H1(Ω) yield
the optimal order of convergence, i.e., O(h2). We have not presented numerical
results to illuminate this fact in this paper.

We now consider the problem (57). First, we computed the finite element solu-
tions uh, u∗h,1, and u∗h,2, with k = 1, to approximate the solution u of the problem
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n |G(u)−G(uh)| rate |G(u)−G(u∗h,1)| rate |G(u)−G(u∗h,2)| rate
10 3.220E-03 4.270E-03 3.274E-03
20 8.047E-04 2.001 1.114E-03 1.938 8.203E-04 1.997
40 2.011E-04 2.000 2.924E-04 1.930 2.059E-04 1.994
80 5.028E-05 2.000 7.725E-05 1.920 5.175E-05 1.992
160 1.257E-05 2.000 2.060E-05 1.907 1.303E-05 1.990
320 3.413E-06 2.000 5.549E-06 1.892 3.286E-06 1.987
640 7.856E-07 2.000 1.513E-06 1.875 8.306E-07 1.984

Table 3: uh, u∗h,1, and u∗h,2 are piecewise linear (k = 1) finite element solutions
with exact integration, with 1-point Gaussian quadrature, and with 2-point Gauss-
ian quadrature (over-integration), respectively, approximating the solution of the
problem (57). The data does not have the increased regularity for k = 1.

n |G(u)−G(uh)| rate |G(u)−G(u∗h,2)| rate |G(u)−G(u∗h,50)| rate
10 8.647E-07 5.492E-05 8.665E-07
20 5.695E-08 3.925 1.575E-05 1.802 5.751E-08 3.913
40 3.670E-09 3.956 4.750E-06 1.730 3.847E-09 3.902
80 2.337E-10 3.973 1.465E-06 1.697 2.895E-10 3.732
160 1.478E-11 3.982 4.566E-07 1.682 3.237E-11 3.161

Table 4: uh, u∗h,2, and u∗h,50 are piecewise quadratic (k = 2) finite element solu-
tions with exact integration, with 2-point Gaussian quadrature, and with 50-point
Gaussian quadrature (over-integration), respectively, approximating the solution of
the problem (57). The data does not have the increased regularity for k = 2.

(57). Note that u∗h,2 is the finite element solution with over-integration. We have
summarized the results in Table 3. We then computed the finite element solutions
uh, u∗h,2, and u∗h,50, with k = 2, to approximate the solution u of the problem (57);
u∗h,50 is the finite element solution with over-integration. We have summarized the
results for k = 2 in Table 4. We note that the Gauss rules employed to compute u∗h,1

in Table 3 and u∗h,2 in Table 4 have the algebraic precision, as required in Theorem
3.6. But the data f of problem (57) does not have the increased regularity required
in Theorem 3.6, either for k = 1 or for k = 2.

1. We observe from the Tables 3 and 4 that |G(u)−G(uh)| converges with the
optimal order, O(h2k), k = 1, 2, as expected in Lemma 2.2, since u ∈ H3(Ω).

2. It is clear from Table 3 that the rate of convergence of |G(u) − G(u∗h,1)| is
decreasing with increasing values of n. We recall that the lower bound of
the error is O(h5/3), as mentioned in Remark 4.7. The rate of convergence
of |G(u) − G(u∗h,1)| in Table 3 is close to optimal, i.e., O(h2), for smaller
values of n, but the rate slows down as n increases. This indicates the
over-integration does not yield the optimal rate of convergence. However,
the over-integration reduces the size of the error.

3. The Table 4 shows that the rate of convergence of |G(u)−G(u∗h,2)| decreases
with increasing n and indicates that the rate is approaching O(h5/3) – the
lower bound of the error as mentioned in Remark 4.7. Also the third column
of Table 4 clearly indicates that over-integration does not yield optimal order
of convergence, but certainly reduces the size of the error.
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These experiments indicate that the increased regularity assumptions to obtain
the optimal order of convergence in Theorem 3.6 is, in general, necessary. Also,
over-integration reduces the size of the error, and may even yield the optimal order
of convergence in the pre-asymptotic range. But over-integration does not yield the
asymptotic optimal rate of convergence.
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