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In the past few years meshless methods for numerically solving partial differen-
tial equations have come into the focus of interest, especially in the engineering
community. This class of methods was essentially stimulated by difficulties re-
lated to mesh generation. Mesh generation is delicate in many situations, for
instance, when the domain has complicated geometry; when the mesh changes
with time, as in crack propagation, and remeshing is required at each time
step; when a Lagrangian formulation is employed, especially with nonlinear
PDEs. In addition, the need for flexibility in the selection of approximating
functions (e.g., the flexibility to use non-polynomial approximating functions),
has played a significant role in the development of meshless methods. There
are many recent papers, and two books, on meshless methods; most of them
are of an engineering character, without any mathematical analysis.

In this paper we address meshless methods and the closely related generalized
finite element methods for solving linear elliptic equations, using variational
principles. We give a unified mathematical theory with proofs, briefly ad-
dress implementational aspects, present illustrative numerical examples, and
provide a list of references to the current literature.
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The aim of the paper is to provide a survey of a part of this new field, with
emphasis on mathematics. We present proofs of essential theorems because
we feel these proofs are essential for the understanding of the mathematical
aspects of meshless methods, which has approximation theory as a major
ingredient. As always, any new field is stimulated by and related to older
ideas. This will be visible in our paper.
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1. Introduction

1.1. A brief historical review of the numerical solution of partial
differential equations

The numerical solution of partial differential equations has been of central
importance for many years. Significant progress has been made in this
area, especially in the last 30 years; this progress is directly related to the
developments in computer technology. Methods such as, for example, the
finite element method, are used in many applications.

Although significant progress has been made, numerical methods for the
solution of differential equations are still often based on heuristic ideas, and
verified by numerical experiments. Mathematical analysis is often shallow,
and fails to address fully important issues that arise in the application of
the methods to important problems in engineering and science.
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There are three classical families of numerical methods for solving PDEs:

(1) finite difference methods;
(2) finite volume methods;
(3) finite element methods.

These three families have two common, basic features:

(a) they employ a mesh;
(b) they use local approximation by polynomials.

We discuss each of these features in turn.
Mesh generation is often very expensive – especially in human effort.

There are several reasons for this effort.

• The domain of the problem can have very complex geometry.
• The domain of the problem may change with time, which requires

remeshing at each time step, as for example in the problem of crack
propagation or when Lagrangian coordinates are used.

• Adaptive procedures require changes of mesh during computation.

Although great progress has been made in the theory and practice of mesh
generation, the construction of the mesh is still a very delicate component
of the numerical solution of differential equations. For this reason there is
an interest in the development of methods that eliminate or reduce the need
for a mesh.

Although polynomials have outstanding approximation properties, there
are situations in which they are not effective. We mention problems whose
solutions are not smooth, in the sense that they may not have several
bounded derivatives. For such problems, there are sometimes other effective
approximating functions, which we will refer to as special. The classical
methods are not flexible in this regard: they do not use these special non-
polynomial approximating functions. There is thus an interest in developing
and analysing methods that can flexibly use these special approximation
functions.

This created the need to develop methods that address both of these
issues: the elimination, completely or partially, of the need for meshes; and
the effective use of special (nonpolynomial) approximating functions. The
inspiration for such methods came mainly from two sources.

The first of these sources is the class of classical particle methods that
arise in physical simulation in connection with the Boltzmann equation or
with fluid dynamics. Particle methods attempt to describe the motion of the
atoms or their averages (or density) in Lagrangian coordinates (see Gingold
and Monaghan (1977, 1982), Monaghan (1982, 1988), Nanbu (1980) and
Neunzert and Struckmeier (1995), for example).
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The other source is the idea of interpolation in the context of general vari-
ational methods (of Galerkin type). These methods select approximations
from a finite-dimensional space, called the trial space, and, under certain
general conditions, it is known that the error in approximation is no larger
than a constant times the error in best approximation by functions in the
trial space. Thus the quality of the method is determined by the approxima-
tion property of the trial space. It is thus natural to try to find a trial space
that has good approximation properties. This property relates directly to
interpolation by the approximating functions. For functions in one dimen-
sion this is a classical issue in numerical analysis, and, from around 1950,
was studied in higher dimensions and for arbitrary distributions of points.
It was recognized that the construction of trial spaces could be based on the
idea of interpolation.

1.2. Meshless methods

Let us now make the discussion of variational methods more precise. We
consider an elliptic PDE, which has the variational or weak form

u ∈ H1, B(u, v) = F(v), for all v ∈ H2, (1.1)

where H1, H2 are two Hilbert spaces, B(u, v) is a bounded bilinear form
on H1 × H2, and F(v) is a continuous linear functional on H2. Under
certain general conditions (the inf-sup or BB condition; see Babuška (1971),
Babuška and Aziz (1972)), the solution u is characterized by (1.1). We are
interested in approximating u. To that end, we assume we have two finite-
dimensional spaces M1 ⊂ H1, M2 ⊂ H2 that satisfy the discrete inf-sup
condition (see Babuška and Aziz (1972)). The approximate solution uM1 is
characterized by

uM1 ∈ M1, B(uM1 , v) = F(v), for all v ∈ M2. (1.2)

As a consequence of the fact that M1 and M2 satisfy the discrete inf-sup
condition, we know that the approximation uM1 is quasi-optimal, that is,

‖u − uM1‖H1 ≤ C inf
χ∈M1

‖u − χ‖H1 . (1.3)

We note that there are delicate problems related to the discrete inf-sup
condition for problems that are not coercive, or where the spaces M1 and
M2 are different, e.g., in the mixed method or non-self-adjoint problems.
Atluri and Shen (2002) use different spaces (without mathematical analysis
of the discrete inf-sup condition).

Thus the quality of the approximation, that is, the error ‖u − uM1‖H1 , is
mainly determined by the approximation properties of the trial space M1,
that is, by

E1 = inf
χ∈M1

‖u − χ‖H1 .



Survey of meshless and generalized finite element methods 5

It is therefore natural to select the trial space M1 so that E1 is small. To
do this effectively we should use whatever information is available for the
solution u. Note that, with a general variational method, as we have for-
mulated it, there is no mention of a mesh. Of course, we may use a mesh
to construct a good trial space; that, in fact, is exactly what is done with a
finite element method. For example, the trial space might be the space of
piecewise linear functions over a mesh.

Meshless methods, however, either avoid the use of a mesh, or use a mesh
only minimally, for example, only for the numerical integration. The Petrov–
Galerkin method given by (1.2) is a meshless method if the construction of
M1 and M2 either does not require a mesh or requires a mesh only minimally.
Thus, in designing meshless methods within the framework of variational
methods, we have two general goals.

(1) The construction of trial spaces M1 that effectively approximate the
solution, and the construction of test spaces M2 ensuring the inf-sup
(stability) condition.

If the solution has special features, e.g., if it is not smooth, we should
have the flexibility to use special approximating functions.

(2) The minimizing of the need for a mesh.

In meshless methods, there is sometimes a mesh in the background,
used for numerical integration, but we may not need a mesh generator.

We note that there are meshless methods that are not of the type given
by (1.2), for instance, methods based on collocation, but the construction
of approximating space follows the guidelines of the construction of M1, as
mentioned before.

The approximating (trial) spaces can be the spans of specific approxi-
mating functions (shape functions), with either global or local supports.
Polynomials and non-compactly supported radial basis functions are exam-
ples of approximating functions that are defined over the entire domain of
interest. See Mikhlin (1971) for a discussion of the use of polynomials and
Buhmann (2000) and Powell (1992) for a discussion of the use of radial basis
functions. Another type of approximating function is related to interpola-
tion and data fitting procedures. For a survey of various approaches we refer
to Atluri and Shen (2002), Dierckx (1995), Franke (1978, 1979), Gordon and
Wixon (1978), Lancaster and Salkauskas (1981, 1986), McLain (1974), and
Shepard (1968). Typical finite element approximating functions and spline
functions have local supports. Babuška, Caloz and Osborn (1994) identified
and analysed shape functions that are effective for the approximation of
solutions of elliptic equations with rough coefficient; the idea in this paper
was extended and developed in Babuška and Melenk (1997). The approx-
imating functions used in Babuška et al. (1994) and Babuška and Melenk
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(1997) can be characterized as solutions of particular homogeneous differ-
ential equations. In one dimension, L-splines – a generalization of splines
that satisfy a differential equation – are used as approximating functions:
see, e.g., Varga (1971). Principles for the selection of shape function were
addressed in Babuška, Banerjee and Osborn (2001, 2002b).

We note that in the engineering literature many names are used for meth-
ods that differ only in their implementation or in the shape functions em-
ployed: see, e.g., De and Bathe (2001) and Sukumar, Moes, Moran and Be-
lytschko (2000), among others. For a survey of results on meshless methods
we refer to Babuška, Banerjee and Osborn (2002a), Belytschko, Krongauz,
Organ, Fleming and Krysl (1996), Duarte (1995), Griebel and Schweitzer,
eds (2002a), Li and Liu (2002), Liu (2002) and Schweitzer (200x).

One of the major problems of meshless methods is the imposition of
boundary conditions, especially Dirichlet boundary conditions. It is well
known that, if the underlying problem is a Dirichlet BVP, the essential
boundary condition is addressed with a method such as the penalty method
or the Lagrange multiplier method. On the other hand, the boundary con-
dition of a Neumann problem is natural, and does not need to be explicitly
imposed in the variational formulation. In both situations, a simple uniform
mesh on a rectangle containing the domain can be used; the mesh need not
conform to the boundary and a mesh generator is not needed. These ideas
are classical and have been extensively analysed (for example, see Babuška
and Aziz (1972)). This way of imposing boundary conditions can be used
in the context of meshless methods, and this approach was also mentioned
in Li and Liu (2002). The boundary of the domain does come into play in
the construction of the stiffness matrix, but a mesh generator is not needed.
This approach was generalized and used together with the ideas in Babuška
et al. (1994), Babuška and Melenk (1997) and Strouboulis, Babuška and
Copps (2001a) in solving problems with very complex geometries: see, e.g.,
Strouboulis, Copps and Babuška (2001b).

We finally mention a meshless method – the generalized finite element
method (GFEM) – which attempts to achieve simultaneously the two goals
of variationally formulated meshless methods. With this method we begin
with a partition of unity. Construction of a partition of unity is a relatively
simple task. It can be done by various means. One is to use a simple mesh,
for example a uniform mesh, and use the associated hat functions as the
partition of unity. We could also use ideas from various interpolation proce-
dures, for instance, the Shepard method. It is essential that the construction
can, but is not required to, utilize the geometry of the domain. The par-
tition of unity on the domain is obtained by restriction. The partition of
unity functions typically have compact supports with small diameters.

Then we multiply the partition of unity functions by functions that are
defined separately and independently on the supports of the partition of
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unity functions. In this way we create shape functions that belong to H1(Ω),
and can be used in the variational method. We thereby obtain a large
flexibility in the construction of shape functions, and the associated trial
spaces. This flexibility can be used to construct approximations that utilize
the available information, the character of a singularity, or a boundary layer,
e.g., on the approximated function (solution). Hence the method achieves
the goals mentioned above.

We do face three serious difficulties in the implementation of the GFEM.
First there is the problem of numerical integrations when the areas over
which we integrate are not simple triangles, simplices, etc., as with the
usual FEM. We note, however, that the process is completely parallelizable.
A second difficulty is the treatment of essential boundary conditions. The
third issue concerns the system of linear equations. It may be singular, and
thus certain classical methods, such as multigrid, may not be applicable.
These difficulties can be, and have been, overcome in some implementations,
so it is clear that the GFEM shows a definite advantage over the classical
FEM in certain situations. We mention problems with complex geometry,
crack propagation, and analysis of multi-site local damage.

Of course, any new method should be compared with previously developed
methods, and the class of problems for which the new method is superior
should be identified. Theoretical and practical experience (see Babuška et al.
(2002a), Li and Liu (2002) and Strouboulis et al. (2001b)) is progressing in
this direction. Meshless methods in various forms, e.g., within the frame-
work of collocation or variational methods, are now the subject of many
papers and (engineering) books, which mainly focus on practical aspects
without serious theoretical analysis.

This paper focuses on ideas and theoretical results. Some are adjustments
of old ideas and results. Some results are based on papers that are submitted
or in the final stage of preparation. Although we focus on the theory, we
have attempted to address theoretical issues that illuminate practical issues.
We will show that the results presented here are natural generalizations of
the classical FEM, which is a special case of some of the methods presented
here. This paper addresses only problems related to linear PDEs.

Various relevant and typical references are provided. The reference list is
not comprehensive, but together with the citations in the references provide,
in our opinion, a very reasonable description of the current state of the art
in meshless methods.

1.3. The scope of this paper

The short Section 2 defines the model problem, a linear elliptic bound-
ary value problem. Section 3.1 presents approximation results when the
particles are uniformly distributed. The presented results were obtained
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using the Fourier transform. Section 3.2 presents an alternative proof of the
approximation results that can be generalized to the case of non-uniformly
distributed particles. Section 3.3 discusses approximation for arbitrarily dis-
tributed particles. Section 4 discusses the construction of shape functions,
and presents some results on interpolation and on the asymptotic form of
the error. Section 5 addresses the question of superconvergence. Section 6
discusses the generalized finite element method. Section 7 discusses the ap-
plication of the approximation results developed in Section 3, and discusses
the treatment of Dirichlet boundary conditions. Section 8 explains some
implementational aspects. Section 9 reports some numerical examples ob-
tained by the GFEM, when the domain is very complex. Finally, Section 10
presents additional results and challenges.

2. The model problem

For concreteness and simplicity we will address the weak solution of the
model problem

−∆u + u = f(x), on Ω ⊂ Rn (2.1)

and
∂u

∂n
= 0, on ∂Ω, (2.2)

or

u = 0, on ∂Ω, (2.3)

where f ∈ L2(Ω) is given. We will assume that Ω is a Lipschitz domain;
additional assumptions on ∂Ω will be given as needed.

The weak solution u0 ∈ H1(Ω) (H1
0 (Ω), respectively) satisfies

B(u0, v) = F(v), for all v ∈ H1(Ω) (v ∈ H1
0 (Ω), respectively), (2.4)

where

B(u, v) ≡
∫

Ω
(∇u · ∇v + uv) dx and F(v) ≡

∫
Ω

fv dx. (2.5)

The energy norm of u0 is defined by

‖u0‖E ≡ B(u0, u0)1/2 = ‖u0‖H1(Ω). (2.6)

We will write H instead of H1(Ω) or H1
0 (Ω) if no misunderstanding can

occur.
Let S ⊂ H be a finite-dimensional subspace, called the approximation

space. Then the Galerkin approximation, uS ∈ S, to u0 is determined by

B̃(uS , v) = F(v), for all v ∈ S, (2.7)
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where B̃ is either B or a perturbation of B. If B̃ = B, it is immediate that

‖u0 − uS‖H1(Ω) = inf
χ∈S

‖u0 − χ‖H1(Ω). (2.8)

Hence, the main problem is the approximation of u0 by functions in S.

Remark 1. The finite element method (FEM) is the Galerkin method
where S is the span of functions with small supports. For the history of the
FEM, see Babuška (1994) and the references therein.

Remark 2. The classical Ritz method uses spaces of polynomials on the
entire domain Ω for the approximation spaces: see, e.g., Mikhlin (1971).

As mentioned above, the finite element method uses basis functions with
small supports, for example, ‘hill’ functions. The theory of approximation
with general hill functions with translation-invariant supports was developed
in Babuška (1970) using the Fourier transform. The results in Babuška
(1970) were applied to the numerical solution of PDEs in Babuška (1971). A
very similar theory, also based on the Fourier transform, was later developed
in Strang (1971) and Strang and Fix (1973); see also Li and Liu (1996).
Later, hill functions were, in another context, called particle functions (see
Gingold and Monaghan (1977)). In the 1990s, hill functions began to be
used in the framework of meshless methods. For a broad survey of meshless
methods see Li and Liu (2002). A survey of the approximation properties of
radial hill functions, previously referred to as radial basis functions, is given
in Buhmann (2000).

In this paper we will survey basic meshless approximation results and
their use in the framework of Galerkin methods.

3. Approximation by local functions in R
n:

the h-version analysis

As mentioned in Section 2, we are interested in the approximation of func-
tions by particle shape functions. We first consider uniformly distributed
particles, and then general (non-uniformly distributed) particles.

3.1. Uniformly distributed particles and associated particle shape functions

Let Z be the integer lattice, and, for j = (j1, . . . , jn) ∈ Z
n and 0 < h ≤ 1,

let
xh

j = (j1h, . . . , jnh) = hj.

The points xh
j are called uniformly distributed particles. When considering

such families of particles, we often construct associated shape functions,
called particle shape functions, as follows. Let φ ∈ Hq(Rn), for some 0 ≤ q,
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be a function with compact support; let η ≡ supp φ, and suppose

η ⊂ Bρ = {x ∈ R
n : ‖x‖2 = x2

1 + · · · + x2
n < ρ}.

We assume that 0 ∈ η̊ (η̊ is the interior of η). Then define

φh
j (x) = φh

j (x1, . . . , xn) = φ

(
x − jh

h

)
= φ

(
x1 − j1h

h
, . . . ,

xn − jnh

h

)
,

(3.1)
for j ∈ Z

n and 0 < h ≤ 1. Clearly,

ηh
j ≡ supp φh

j =
{

x :
x − jh

h
∈ η

}
⊂ Bj

ρh = {x : ‖x − xh
j ‖ < ρh},

and xh
j ∈ η̊h

j . Particles and particle shape functions defined in this way will
be called translation-invariant , since they satisfy

xh
j+l = xh

j + xh
l and φh

j+l(x) = φh
j (x − xh

l ).

They are a special case of general (non-uniformly distributed) particles,
which will be introduced in Section 3.3. We refer to h as the size of the
particle, and the function φ is called the basic shape function. In this section
we will be interested in the approximation properties of

V k,q
h ≡

{
v = v(x) =

∑
j∈Zn

wh
j φh

j (x) : wh
j ∈ R

}
, (3.2)

which is the linear span of the associated shape functions, as h → 0. The
parameter k in V k,q

h is related to a property of the {φh
j (x)}, which will be

discussed later. We will refer to V k,q
h as the particle space in R

n. The {wh
j }

are called weights. Specifically, given u ∈ Hk+1(Rn), we are interested in
estimating

inf
χ∈V k,q

h

‖u − χ‖Hs(Rn), (3.3)

for 0 ≤ s ≤ min{q, k + 1}. We are especially interested in the maximum µ
such that

inf
χ∈V k,q

h

‖u − χ‖Hs(Rn) ≤ C(k, q)hµ‖u‖Hk+1(Rn), (3.4)

for 0 ≤ s ≤ min{q, k + 1}, where the constant C = C(k, q) depends on k, q,
but is independent of h (C also depends on φ).

Because we are assuming the particles are uniformly distributed, and
hence the particles and shape functions are translation-invariant, estimates
of the form (3.4) can be obtained via the Fourier transform. This was done
in Babuška (1970), Strang (1971) and Strang and Fix (1973). We will cite
one of the results in the last paper.



Survey of meshless and generalized finite element methods 11

Let

φ̂(ξ) = φ̂(ξ1, . . . , ξn) ≡
∫

Rn

φ(x)e−ix·ξ dx

denote the Fourier transform of φ(x). We note that φ̂(ξ) ∈ C∞(Rn) since
φ(x) has compact support. We use the usual multi-index notation: α =
(α1, . . . , αn), with αi ≥ 0; |α| = α1 + · · · + αn; xα = xα1

1 · · ·xαn
n ; and

Dαφ̂ =
∂|α|φ̂

∂ξα1
1 · · · ∂ξαn

n
.

Theorem 3.1. (Strang and Fix 1973) Suppose φ ∈ Hq(Rn) has com-
pact support, where the smoothness index q ≥ 0 is an integer. Then the
following three conditions are are equivalent:

(1)

φ̂(0) 	= 0 (3.5)

and
Dαφ̂(2πj) = 0, for 0 	= j ∈ Z

n and |α| ≤ k, (3.6)

where k is a nonnegative integer.
(2) For |α| ≤ k,∑

j∈Zn

jαφ(x − j) = λxα + qα(x), for all x ∈ R
n, (3.7)

where λ 	= 0 and qα(x) is a polynomial with degree < |α|.
The equality in (3.7) is for almost all x ∈ R

n. The function of the
right-hand side of (3.7) is, of course, continuous. If the function on the
left-hand side is continuous, which will be the case if q > n/2, then
(3.7) will hold for all x ∈ R

n.
(3) For each u ∈ Hk+1(Rn) there are weights wh

j ∈ R, for j ∈ Z
n and

0 < h, such that∥∥∥∥u− ∑
j∈Zn

wh
j φh

j

∥∥∥∥
Hs(Rn)

≤ Chk+1−s‖u‖Hk+1(Rn), for 0 ≤ s ≤ min{q, k + 1}, (3.8)

and
hn
∑
j∈Zn

(wh
j )2 ≤ K2‖u‖2

H0(Rn). (3.9)

Here C and K may depend on q, k, and s, but are independent of u and h.
The exponent k + 1 − s is the best possible if k is the largest integer for
which (3.7) holds.
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If (3.7) holds, the basic shape function φ is called quasi-reproducing of
order k. If (3.7) holds with λ = 1 and qα(x) = 0, φ is called reproducing of
order k. If φ is quasi-reproducing of order k (respectively, reproducing of
order k), then the corresponding particle shape functions φh

i are also called
quasi-reproducing of order k (respectively, reproducing of order k). The
parameter k in V k,q

h , defined in (3.2), is the quasi-reproducing order of the
basic shape function φ.

Remark 3. If one were to define the notion of quasi-reproducing basic
shape function φ of order k by the formula∑

j∈Zn

jαφ(x − j) = λαxα + qα(x), for all x ∈ R
n, for |α| ≤ k, (3.10)

where λα 	= 0, it might appear that this would lead to a larger class of
functions. This, however, is not the case; it is easily shown that if φ satisfies
(3.10), then λα = λ, for |α| ≤ k.

In one dimension we can prove more.

Theorem 3.2. (Strang and Fix 1973) Suppose φ ∈ Hq(R) (in one di-
mension) has compact support and satisfies condition (1) of Theorem 3.1,
that is, it satisfies (3.5) and (3.6). Then

φ̂(ξ) = Z(ξ)
(

sin(ξ/2)
ξ/2

)k+1

, (3.11)

where Z(ξ) is an entire function.

Proof. Because φ has compact support, φ̂(ξ) is an entire function and,
because of (3.5) and (3.6), φ̂(0) 	= 0, and φ̂(ξ) has zeros of at least order k
at 2πj, 0 	= j ∈ Z. Let

σ̂k(ξ) =
(

sin(ξ/2)
ξ/2

)k+1

. (3.12)

The function σ̂k(ξ) is entire with only zeros of order k + 1 at 2πj, for 0 	=
j ∈ Z. Hence

Z(ξ) = φ̂(ξ)/σ̂k(ξ)

is entire, and

φ̂(ξ) = Z(ξ)
(

sin(ξ/2)
ξ/2

)k+1

, (3.13)

as desired.

Theorem 3.3. (Babuška 1970) Suppose φ ∈ Hq(R) (in one dimension)
has compact support and satisfies condition (1) of Theorem 3.1, that is,
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it satisfies (3.5) and (3.6). Then, for any ε > 0,

supp φ 	⊂
[
−(k + 1)

2
+ ε,

(k + 1)
2

− ε

]
. (3.14)

Proof. Suppose, on the contrary, that

supp φ ⊂ [−(k + 1)/2 + ε, (k + 1)/2 − ε], for some ε > 0. (3.15)

We will show that this assumption leads to a contradiction.
The function φ̂(ξ) is entire and, with ξ = ξ1 + iξ2, (3.15) implies

|φ̂(ξ)| ≤ Ce(
(k+1)

2
−ε)|ξ2|. (3.16)

This estimate follows directly from the definition of the Fourier transform
and assumption (3.15). Using elementary properties of the sine function, we
find that ∣∣∣∣

(
sin(ξ/2)

ξ/2

)k+1∣∣∣∣ ≥ C
e

k+1
2

|ξ2|

|ξ2|k+1
, for |ξ2| large. (3.17)

Using (3.5), (3.6), (3.16), and (3.17), we have

|Z(ξ)| =

∣∣∣∣∣ φ̂(ξ)( sin(ξ/2)
ξ/2

)k+1

∣∣∣∣∣ ≤ C0 + Ck+1|ξ|k+1, for all ξ ∈ C, (3.18)

where Z(ξ) is as in (3.11). Since Z(ξ) is entire, estimate (3.18) implies (via
a generalization of Liouville’s theorem for entire functions) that Z(ξ) is a
polynomial of degree ≤ k + 1. Next, we use (3.11) and (3.16) to get∣∣∣∣Z(ξ)

(
sin(ξ/2)

ξ/2

)k+1∣∣∣∣ = |φ̂(ξ)| ≤ Ce( k+1
2

−ε)|ξ2|. (3.19)

Combining this estimate with the lower bound in (3.17), we have

|Z(ξ)| ≤ C|ξ|k+1e−ε|ξ2|, for |ξ2| large. (3.20)

This implies Z(ξ) = 0. Thus, (3.11) implies φ̂(ξ) = 0, which contradicts
(3.5). Thus (3.15) is false, which proves (3.14).

The case of uniformly distributed particles is very special, but we have
considered it, and cited Theorem 3.1 from Strang and Fix (1973) because
the result provides necessary and sufficient conditions on the basic shape
function φ for the validity of the approximability result (3.8) and (3.9),
leading to the optimal value for µ in (3.4).

Remark 4. Condition (2) of Theorem 3.1 implies that∑
j∈Zn

φ(x − j) = b. (3.21)



14 I. Babuška, U. Banerjee and J. E. Osborn

Hence the functions φ(x − j)/b, j ∈ Z
n, form a partition of unity. Thus

sets η̊h
j form an open cover of R

n.

Remark 5. Condition (2), i.e., (3.7), of Theorem 3.1 is the definition of
the notion of quasi-reproducing of order k, and from Theorem 3.1 we see
that this notion is equivalent to condition (1), i.e., to (3.5) and (3.6). It is
of interest to have a condition similar to (3.5) and (3.6) that is equivalent
to the related notion of reproducing of order k, which can be stated as∑

j∈Zn

p(j)φ(x − j) = p(x), for all polynomials p(x) of degree ≤ k.

It can be shown that φ is reproducing of order k if and only if

(a) φ̂(0) = 1,

(b) Dαφ̂(0) = 0, for 1 ≤ |α| ≤ k,

(c) Dαφ̂(2πj) = 0, for 0 	= j ∈ Z
n and |α| ≤ k.

The proof follows the argument of the proof of Theorem 3.1 in Strang and
Fix (1973).

Remark 6. The B-spline of order k, denoted by σk(x), is the (k + 1)-fold
convolution of the characteristic function of the cube (−1/2, 1/2)n. The
support of σk(x) is the closed cube [−(k +1)/2, (k +1)/2]n, and the Fourier
transform of σk(x) is given by

σ̂k(ξ) =
n∏

i=1

(
sin ξi/2

ξi/2

)k+1

.

Here σ̂k(ξ) satisfies (3.5) and (3.6), and thus σk(x) is quasi-reproducing of
order k. We note, however, that σk(x) is not reproducing of order k for
k > 1, since σ̂k(ξ) does not satisfy condition (b) in Remark 2 for k > 1.

In one dimension (n = 1), we can say more. If φ(x) satisfies (3.5) and
(3.6), then from Theorem 3.2, φ̂(ξ) is the product of σ̂k(ξ) and a suitable
entire function Z(ξ). Using the Paley–Wiener theorem (see Rudin (1991)),
it can be shown that Z(ξ) is the Fourier transform of a distribution ψ with
compact support: Z(ξ) = ψ̂(ξ). We can thus express (3.11) as

φ̂(ξ) = ψ̂(ξ)σ̂k(ξ).

Thus any φ(x) that satisfies (3.5) and (3.6), which may or may not be
piecewise polynomial, can be constructed via the convolution of the B-spline
with a distribution with compact support. If n > 1, no such divisor φ̂/σ̂k

exists in general.

Remark 7. Theorem 3.3 has an especially simple interpretation for φ sat-
isfying (3.5) and (3.6), and whose support is a symmetric interval about 0;
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namely, suppφ ⊇
[
−k+1

2 , k+1
2

]
, and hence grows with k. As mentioned

above, the support of σk(x) is
[
−k+1

2 , k+1
2

]
, and hence σk(x) has minimal

support.

Remark 8. The size of the support η of φ, i.e., the diameter of the small-
est closed ball containing η, plays an important role when particle shape
functions are used in a Galerkin method to approximate the solution of a
variationally posed boundary value problem. The Galerkin method leads to
a linear algebraic system, where the (stiffness) matrix is banded, and it is
well known that such linear systems can be solved efficiently by the elimi-
nation method when the bandwidth is small. The size of the bandwidth is
directly proportional to the size of η. Thus it is desirable to use a φ whose
support is as small as possible, of course, without sacrificing the accuracy
of the computed solution of the differential equation. In one dimension, as
mentioned above, the basic shape function σk(x) has the minimal support
[−(k + 1)/2, (k + 1)/2], which increases with k.

Remark 9. Suppose φ(x) ∈ Hq(Rn) has compact support and is quasi-
reproducing of order k. For s ≤ q, let

φ∗(x) =

(
1 +

∑
|β|≤s

αβDβ

)
φ(x).

Then φ∗(x) ∈ Hq−s(Rn), φ∗ is quasi-reproducing of order k, and suppφ∗ =
supp φ.

Remark 10. Suppose φ ∈ Hq(Rn) is quasi-reproducing of order k. It
is possible to construct another shape function φ∗, in terms of φ, that is
reproducing of order k, is in Hq(Rn), but will have a larger support than
φ. For example, φ∗ can be constructed as a linear combination of translates
of φ.

Remark 11. For the sake of simplicity, suppose k = 2 or 3 in this remark.
Consider the function φ(x), x ∈ R, whose Fourier transform is given by

φ̂k(ξ) = σ̂k(ξ)
(

1 − σ̂
′′
k (0)
2

ξ2

)
, (3.22)

where σk(x) is the B-spline of order k (recall σk(x) is quasi-reproducing
of order k and its support is [−(k + 1)/2, (k + 1)/2). Here φ̂k(ξ) satisfies
conditions (a), (b), (c) of Remark 2, and hence φk(x) is reproducing of
order k. From (3.22) it is clear that

φk(x) =
[
σk ∗

(
δ0 −

σ̂
′′
k (0)
2

δ
′′
0

)]
(x),

where δ0 is the Dirac distribution, and hence suppφk = suppσk. From the
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expression for σ̂k(ξ), we easily see that σk ∈ Hk+1/2−ε(R). Using the expres-
sion for φ̂k(ξ) (i.e., (3.22)), we get φk ∈ Hk−3/2−ε(R), but φk /∈ Hk−1(R).
Thus, for k = 2, we have φ2 ∈ H1/2−ε(R), but φ2 /∈ H1(R). And for k = 3,
we see that φ3 ∈ H3/2−ε(R), and hence φ3 ∈ H1(R). For approximating so-
lutions of second-order differential equations, it is important that the shape
functions are in H1. This dichotomy between the cases k = 2 (even) and
k = 3 (odd), in fact, holds for all k. Thus, for k even, there is no φk ∈ H1(R)
that is reproducing of order k with support

[
−k+1

2 , k+1
2

]
. This latter result

can be seen as follows. From Remark 3 we know that φk is the convolution of
σk and a distribution with compact suport. If we require suppφk = suppσk,
then this distribution must be supported at the origin, and hence its Fourier
transform must be a polynomial. We have examined the case when the

polynomial is 1 − σ̂
′′
k (0)
2 ξ2; the general situation is similar.

Remark 12. The weights in (3.8) depend on u, but they are not unique.
We note that the functions φh

j may be linearly dependent. Taking q = k +1
allows application of Theorem 3.1 for all s ≤ k + 1. Taking q > k + 1,
i.e., assuming extra smoothness on the particle shape functions, does not
change the estimate. The approximability of the classical finite element
shape functions (the hat functions) can be analysed with Theorem 3.1 with
q = k = 1.

Remark 13. The space V k,q
h is a St,k∗

-regular system (this notion will be
introduced in Section 3.2), with k∗ = q and t = k + 1. St,k∗

-regular sys-
tems are analysed in Babuška and Aziz (1972). They have many important
properties, some of which will be used in the following sections.

3.2. Alternative proof for uniformly distributed particles and particle shape
functions

In this section we first give an alternative proof that condition (2) of Theo-
rem 3.1 implies estimate (3.8), again for uniformly distributed particles and
associated shape functions. This alternative proof does not use the Fourier
transform, and it can be naturally generalized to non-uniformly distributed
particles.

We review our notation before stating the theorem. Recall that

xh
j = jh, for j ∈ Z

n and 0 < h,

are the particles, and φ ∈ Hq(Rn), with q ≥ 0, is the basic shape function.
Also η = supp φ ⊂ Bρ, and 0 ∈ η̊. Then the particle shape functions,
φh

j (x), are defined by

φh
j (x) = φ

(
x − jh

h

)
;
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it is immediate that

ηh
j = supp φh

j ⊂ Bj
ρh,

and xh
j ∈ η̊h

j .

Theorem 3.4. Suppose φ ∈ Hq(Rn), with smoothness index q ≥ 0, has
compact support η ⊂ Bρ, and suppose the φh

j (x) are defined in (3.1). Sup-
pose k = 0, 1, 2, . . . and suppose, for |α| ≤ k,∑

j∈Zn

jαφ(x − j) = λxα + qα(x); (3.23)

here λ 	= 0, and qα(x) is a polynomial of degree < |α|, i.e., suppose φ is
quasi-reproducing of order k. Suppose u satisfies∑

j∈Zn

‖u‖2
Hrj+1(Bj

ρh)
< ∞, where 0 ≤ rj ≤ k, (3.24)

where ρ ≥ 1 is sufficiently large and independent of h. Then there exist
weights wh

l such that∥∥∥∥∥u −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
2

Hs(Rn)

≤ C
∑
j∈Zn

h2(rj+1−s)‖u‖2
Hrj+1(Bj

ρh)
,

for 0 ≤ s ≤ min
j∈Zn

{q, rj + 1}, (3.25)

where C is independent of u and h. If u ∈ Hk′+1(Rn), where 0 ≤ k′ ≤ k,
then∥∥∥∥∥u−

∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Rn)

≤ Chk′+1−s‖u‖Hk′+1(Rn), for 0 ≤ s ≤ min{q, k′+1}.

(3.26)

Proof. The proof is in several steps.

1. Suppose φ satisfies (3.23), and write qα(x) =
∑

|γ|≤|α|−1 dγαxγ . Then∑
j∈Zn

(xh
j )αφh

j (x) =
∑
j∈Zn

(jh)αφh
j (x)

= h|α|
∑
j∈Zn

jαφ

(
x

h
− j

)

= h|α|
{

λ

(
x

h

)α

+ qα

(
x

h

)}
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= λ xα + h|α|
∑

|γ|≤|α|−1

dγα

(
x

h

)γ

= λ xα +
∑

|γ|≤|α|−1

h|α|−|γ|dγαxγ , for |α| ≤ k. (3.27)

Equations (3.23) and (3.27) are in fact equivalent: (3.27) could be viewed
as a scaled version of (3.23). For any p ∈ Pk, there is a uniquely determined
w = wp,h ∈ Pk satisfying

p(x) =
∑
j∈Zn

wp,h(xh
j )φh

j (x), for all x ∈ R
n. (3.28)

We first prove the existence of wp,h, and begin by considering the monic
polynomials pα = xα. Suppose |α| = 0. Then from (3.27) we have

1 =
∑
j∈Zn

1
λ

φh
j (x) =

∑
j∈Zn

w{1},h(xh
j )φh

j (x),

where w{1},h(x) = 1/λ. Next suppose |α| = 1. Using (3.27) again we have

xα =
∑
j∈Zn

1
λ

(xh
j )αφh

j (x) − h d0α

λ
=
∑
j∈Zn

w{xα},h(xh
j )φh

j (x)

where

w{xα},h(x) =
xα

λ
− h d0α

λ2
.

Proceeding in this way, by induction, we get w{xα},h(x) for |α| ≤ k, where
w{xα},h(x) is of the form

w{xα},h(x) = eααxα +
∑

|β|≤|α|−1

eαβh|α|−|β|xβ , (3.29)

where eαα = λ−1 and eαβ are expressions in dγα, |γ| < |α|. For p(x) =∑
|α|≤k cαxα, we let wp,h(x) =

∑
|α|≤k cαw{xα},h(x). It is immediate that

p(x) =
∑
j∈Zn

wp,h(xh
j )φh

j (x),

which establishes the existence of wp,h(x). We can show that

wp,h(x) =
∑
|β|≤k


 ∑
|β|+1≤|α|≤k, α=β

cαdαβh|α|−|β|


xβ. (3.30)

To prove uniqueness, suppose wp,h(x) = 0. We will show that p(x) =∑
|α|≤k cαxα = 0. Since wp,h(x) = 0, it is clear from (3.30) that the coeffi-

cient of xβ is zero for |β| ≤ k, from which we can deduce that cα = 0, |α| ≤ k,
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and thus p(x) = 0. It will be convenient to write wp,h(x) = Ahp. Then
Ah : Pk → Pk is a bijection satisfying

p(x) =
∑
j∈Zn

(Ahp)(xh
j )φh

j (x), for all x ∈ R
n, for any p ∈ Pk. (3.31)

We define A = Ah when h = 1. We note that A satisfies (3.31) with h = 1.
We also have

[(Ah)−1w](x) =
∑
j∈Zn

w(xh
j )φh

j , for all x ∈ R
n, for any w ∈ Pk. (3.32)

It is also clear from the construction that Ah : P i → P i, for i ≤ k.

2. Define the cells ωj and ωh
j :

ωj =
{

x : ‖x − j‖∞ ≡ max
i=1,...,n

|xi − ji| < ρ
}

and
ωh

j =
{

x : ‖x − xh
j ‖∞ ≡ max

i=1,...,n
|xi − xh

ji
| < ρh

}
.

The families {ωj}j∈Zn and {ωh
j }j∈Zn are open covers of R

n provided ρ > 1/2.
Let

Ah
j = {l ∈ Z

n : ηh
l ∩ ωh

j 	= ∅},
and define

Ωh
j = ∪l∈Ah

j
ωh

l .

It is immediate that one can select M and ρ̄ such that

card Ah
j ≤ M (3.33)

and
Ωh

j ⊂ Bj
ρ̄h. (3.34)

The constants M and ρ̄ are independent of j and h, but do depend on φ;
specifically on ρ.

For any l ∈ Z
n, since u ∈ Hrl+1(Bl

ρ̄h), it is well known (Bramble and
Hilbert 1970, Bramble and Hilbert 1971, Ciarlet 1980) that there is a poly-
nomial pl,h = pl,h

k of degree ≤ k such that

‖u − pl,h‖Hs(Bl
ρ̄h) ≤ Chrl+1−s‖u‖Hrl+1(Bl

ρ̄h), for 0 ≤ s ≤ rl + 1 ≤ k + 1,

(3.35)
where C is independent of u, h, and l, but does depend on k (pl,h can, in
fact, be chosen such that its degree ≤ rl). Define the weights

wh
l = (Ahpl,h)(xh

l ). (3.36)
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Let j be fixed. We will work with the polynomial pj,h, which satisfies
(3.35) with l = j, as well as the polynomial pl,h. Using (3.36), we find∥∥∥∥∥u −

∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(ωh

j )

≤
∥∥∥∥∥u −

∑
l∈Ah

j

wh
l φh

l

∥∥∥∥∥
Hs(ωh

j )

≤
∥∥∥∥∥u −

∑
l∈Ah

j

(Ahpj,h)(xh
l )φh

l

∥∥∥∥∥
Hs(ωh

j )

+
∑
l∈Ah

j

|(Ahpj,h)(xh
l ) − (Ahpl,h)(xh

l )| ‖φh
l ‖Hs(ωh

j ). (3.37)

We now estimate the two terms on the right side of (3.37).

3. From (3.31) and the definition of Ah
j , we have

p(x) =
∑
l∈Zn

(Ahp)(xh
l )φh

l (x) =
∑
l∈Ah

j

(Ahp)(xh
l )φh

l (x), for x ∈ ωh
j ,

for any p ∈ Pk. Using this formula and (3.35) with l = j, we obtain the
estimate∥∥∥∥∥u −

∑
l∈Ah

j

(Ahpj,h)(xh
l )φh

l

∥∥∥∥∥
Hs(ωh

j )

= ‖u − pj,h‖Hs(ωh
j )

≤ Chrj+1−s‖u‖
Hrj+1(Bj

ρ̄h)
, (3.38)

for the first term of (3.37).
A scaling argument shows that

‖φh
l ‖Hs(ωh

j ) ≤ h−s+n/2‖φ‖Hs(Rn).

Thus ∑
l∈Ah

j

|Ahpj,h(xh
l ) −Ahpl,h(xh

l )| ‖φh
l ‖Hs(ωh

j )

≤ Ch−s+n/2
∑
l∈Ah

j

|Ahpj,h(xh
l ) −Ahpl,h(xh

l )|. (3.39)

It remains to estimate the right-hand side of this inequality.
For l ∈ Ah

j , ωh
l ⊂ Ωh

j , and hence, using (3.34), ωh
l ⊂ Bj

ρ̄h. Also ωh
l ⊂ Bl

ρ̄h.
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Thus, using (3.35) with s = 0, we have

‖pj,h − pl,h‖H0(ωh
l ) ≤ ‖pj,h − u‖H0(ωh

l ) + ‖u − pl,h‖H0(ωh
l )

≤ ‖pj,h − u‖
H0(Bj

ρ̄h)
+ ‖u − pl,h‖H0(Bl

ρ̄h)

≤ Chrj+1‖u‖
Hrj+1(Bj

ρ̄h)

+ Chrl+1‖u‖Hrl+1(Bl
ρ̄h). (3.40)

It is easily shown that there is a constant C such that

‖w‖L∞(ωh
l ) ≤ Ch−n/2‖w‖H0(ωh

l ), for any w ∈ Pk; (3.41)

C is independent of w, h, and l. Applying (3.41) to w = Ahpj,h − Ahpl,h,
we have

|(Ahpj,h)(xh
l ) − (Ahpl,h)(xh

l )|
≤ ‖Ahpj,h −Ahpl,h‖L∞(ωh

l )

≤ Ch−n/2‖Ahpj,h −Ahpl,h‖H0(ωh
l ). (3.42)

For any p ∈ Pk, we write p(x) = p̃
(x−xh

l
h

)
, where p̃ ∈ Pk. Using (3.31)

with h = 1 (recall that A = Ah for h = 1), we see that

p̃(x) =
∑
i∈Zn

(Ap̃)(i)φ(x − i),

and therefore

p(x) = p̃

(
x − xh

l

h

)

=
∑
i∈Zn

(Ap̃)(i)φ
(

x − xh
i+l

h

)

=
∑
i∈Zn

(Ap̃)(i)φh
i+l(x)

=
∑
i∈Zn

(Ap̃)(i − l)φh
i (x)

=
∑
i∈Zn

(Ap̃)
(

xh
i − xh

l

h

)
φh

i (x).

Comparing the above expression with (3.31) and using the uniqueness of the
representation (3.28), we obtain

(Ahp)(x) = (Ap̃)
(

x − xh
l

h

)
. (3.43)
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We further note that ‖Ap̃‖H0(ω0) is a norm on p̃, and since all norms are
equivalent on a finite-dimensional space, we have

‖Ap̃‖H0(ω0) ≤ C‖p̃‖H0(ω0). (3.44)

Therefore, from (3.43) and (3.44), and using the transformation y = (x −
xh

l )/h, we have

‖Ahp‖2
H0(ωh

l )
=
∫

ωh
l

|(Ahp(x)|2 dx =
∫

ω0

|(Ap̃(y)|2 dy

≤ C

∫
ω0

|p̃(y)|2 dy

= C

∫
ωh

l

|p̃((x − xh
l )/h)|2 dx

= C

∫
ωh

l

|p(x)|2 dx

= C‖p‖2
H0(ωh

l )
, for p ∈ Pk, (3.45)

with C independent of p, l, and h. Combining (3.42), (3.45) with pl,h − pj,h

and (3.40) yields

|(Ahpj,h)(xh
l ) − (Ahpl,h)(xh

l )|

≤ Ch−n/2(hrj+1‖u‖
Hrj+1(Bj

ρ̄h)
+ hrl+1‖u‖Hrl+1(Bl

ρ̄h)),

and hence, using (3.33), we have the estimate∑
l∈Ah

j

|(Ahpj,h)(xh
l ) − (Ahpl,h)(xh

l )|

≤ Ch−n/2{Mhrj+1‖u‖
Hrj+1(Bj

ρ̄h)

+
∑
l∈Ah

j

hrl+1‖u‖Hrl+1(Bl
ρ̄h)} (3.46)

for the right side of (3.37). Now we combine (3.37), (3.38), (3.39), and (3.46)
to obtain∥∥∥∥∥u −

∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(ωh

j )

≤ C
∑
l∈Ah

j

hrl+1−s‖u‖Hrl+1(Bl
ρ̄h). (3.47)
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4. Finally, we estimate ‖u −
∑

l∈Zn wh
l φh

l ‖Hs(Rn). Using (3.47), which is
valid for all j ∈ Z

n, and (3.33) we obtain∥∥∥∥∥u −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
2

Hs(Rn)

≤
∑
j∈Zn

∥∥∥∥∥u −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
2

Hs(ωh
j )

≤ C
∑
j∈Zn

∑
l∈Ah

j

h2(rl+1−s)‖u‖2
Hrl+1(Bl

ρ̄h)

≤ C
∑
j∈Zn

h2(rj+1−s)‖u‖2
Hrj+1(Bj

ρ̄h)
, (3.48)

where C (which depends on M) is independent of u and h. This proves (3.25).
Suppose u ∈ Hk′+1(Rn), where 0 ≤ k′ ≤ k. Then taking rj = k′ in (3.48),

and using the fact that the overlap in {Bj
ρ̄h}j∈Zn is bounded independently

of h, we get∥∥∥∥∥u −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Rn)

≤ Chk′+1−s

( ∑
j∈Zn

‖u‖2
Hk′+1(Bj

ρ̄h)

)1/2

(3.49)

≤ Chk′+1−s‖u‖Hk′+1(Rn),

where C is independent of u and h, which is (3.26).

Remark 14. Estimates (3.25) and (3.26) have been established provided
ρ̄ is sufficiently large; specifically, provided (3.33) holds. As pointed out in
connection with (3.34), ρ̄ depends on ρ. Note that the constants C in (3.25)
and (3.26) depend on ρ̄.

So far in this section, we have considered functions u defined on R
n,

and have presented a result on the approximation of u by particle shape
functions. We now consider functions u defined on a bounded domain Ω in
R

n with Lipschitz-continuous boundary. We will show that V k,q
h , defined in

(3.2), when restricted to Ω, provides accurate approximation to u.
We first recall the well-known extension result (Stein 1970) that there

is a bounded extension operator E : L2(Ω) → L2(Rn), i.e., an operator
E satisfying Eu|Ω = u for all u ∈ L2(Ω), such that if u ∈ Hm(Ω) then
Eu ∈ Hm(Rn) and

‖Eu‖Hm(Rn) ≤ Cm‖u‖Hm(Ω), for all u ∈ Hm(Ω), m = 0, 1, . . . . (3.50)

Here Cm is independent of u but depends on m.
We define the subset Z

n
Ω of Z

n, which will be used in the next result, by

Z
n
Ω = {j ∈ Z

n : η̊h
j ∩ Ω 	= ∅}, (3.51)

where ηh
j = supp φh

j .
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Theorem 3.5. Suppose φ ∈ Hq(Rn), with smoothness index q ≥ 0, has
compact support η ⊂ Bρ, and is quasi-reproducing of order k. Suppose
u ∈ Hk′+1(Ω), where 0 ≤ k′ ≤ k. Then there are weights wh

j such that∥∥∥∥∥u −
∑
l∈Zn

Ω

wh
l φh

l

∥∥∥∥∥
Hs(Ω)

≤ Chk′+1−s‖u‖Hk′+1(Ω), 0 ≤ s ≤ min(q, k′ + 1),

(3.52)
where C is independent of u and h.

Proof. Suppose u ∈ Hk′+1(Ω), and let ū = Eu, where E is the extension
operator mentioned above. Applying (3.26) of Theorem 3.4 to ū, there are
weights wh

l such that∥∥∥∥∥ū −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Rn)

≤ Chk′+1−s‖ū‖Hk′+1(Rn).

Therefore, from (3.50) with m = k′ + 1, we have∥∥∥∥∥u −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Ω)

=

∥∥∥∥∥ū −
∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Ω)

≤
∥∥∥∥∥ū −

∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Rn)

≤ Chk′+1−s‖ū‖Hk′+1(Rn)

≤ Chk′+1−s‖u‖Hk′+1(Ω). (3.53)

From the definition of Z
h
Ω in (3.51), it is clear that∥∥∥∥∥u −

∑
l∈Zn

wh
l φh

l

∥∥∥∥∥
Hs(Ω)

=

∥∥∥∥∥u −
∑
l∈Zn

Ω

wh
l φh

l

∥∥∥∥∥
Hs(Ω)

,

and therefore from (3.53) we get the desired result.

By examining the approximation of u, obtained in Theorem 3.5, namely∑
l∈Zn

Ω

wh
l φh

l

∣∣
Ω
,

we see that the sum involves only those l s for which

supp φh
l ∩ Ω 	= ∅,

that is, only those particles xh
l such that dist(xh

l , Ω) < ρh. So the ap-
proximation involves particle shape functions corresponding to the particles
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inside Ω, as well as some particles lying outside Ω. We will denote the span
of these shape functions by

V k,q
Ω,h = span{φh

j

∣∣
Ω

: supp φh
j ∩ Ω 	= ∅}. (3.54)

Thus the functions in V k,q
Ω,h are the functions in V k,q

h restricted to Ω.

(t, k∗)-regular systems
We now introduce (t, k∗)-regular systems of functions (cf. Babuška and Aziz
(1972)). Let Ω ⊆ R

n, and suppose Sh(Ω), 0 < h ≤ 1, is a one-parameter
family of linear spaces of functions on Ω. For 0 ≤ k∗ ≤ t, Sh(Ω) will be
called a (t, k∗)-regular system and will be denoted by St,k∗

h (Ω) if

(1)

(1)St,k∗

h (Ω) ⊂ Hk∗
(Ω), for 0 < h ≤ 1; (3.55)

(2) For every u ∈ H l(Ω), with 0 ≤ l, there is a function gh ∈ St,k∗

h such that

‖u − gh‖Hs(Ω) ≤ Chµ‖u‖Hl(Ω), for 0 ≤ s ≤ min{l, k∗}, (3.56)

where µ = min{t−s, l−s}. The constant C is independent of u and h.

We now introduce two additional notions.

(LA) A (t, k∗)-regular system St,k∗

h (Ω) is said to satisfy a local assumption
if, for u ∈ H l(Ω), with support S, the function gh ∈ St,k∗

h (Ω) in (3.56)
can be chosen so that the support Sh of gh has the property that

Sh ⊂ Sλh ≡ {x ∈ Ω : d(x, S) ≤ λh},
where d(x, S) is the distance from x to S, and λ is independent of h.

(IA) We say that St,k∗

h (Ω) satisfies an inverse assumption (cf. Babuška and
Aziz (1972)) if there is an 0 ≤ ε ≤ k∗ such that

‖g‖Hk∗ (Ω) ≤ Ch−(k∗−r)‖g‖Hr(Ω),

for all k∗ − ε ≤ r ≤ k∗ and all g ∈ St,k∗

h (Ω),

where C is independent of h and g (it may depend on k∗ and ε).

A (t, k∗)-regular system is referred to as a (t, k)-regular system in classical
literature (Babuška and Aziz 1972). We have used k∗ instead of k in this
paper for notational clarity.

The approximation space V k,q
Ω,h, defined in (3.54), is a (t, k∗)-regular sys-

tem: more precisely, we have the following result.

Theorem 3.6. Suppose 0 ≤ q < k + 1, and suppose φ ∈ Hq(Rn) has
compact support and is quasi-reproducing of order k. Then V k,q

Ω,h is a (k +
1, q)-regular system.



26 I. Babuška, U. Banerjee and J. E. Osborn

Proof. We show that V k,q
Ω,h is a (t, k∗)-regular system with t = k + 1 and

k∗ = q. Since φ ∈ Hq(Rn), it is clear that V k,q
Ω,h ⊂ Hq(Ω) and thus (3.55)

is immediate with k∗ = q. Next we show that (3.56) is satisfied. Suppose
u ∈ H l(Rn) with l ≥ 0. If l = 0, (3.56) is trivial. So, suppose 1 ≤ l.
Applying Theorem 3.5, specifically (3.52) with k′ = min(k +1, l)− 1, we get∥∥∥∥∥u −

∑
j∈Zn

Ω

wh
j φh

j

∥∥∥∥∥
Hs(Ω)

≤ Chmin(l−s,k+1−s)‖u‖Hmin(l,k+1)(Ω) ≤ Chµ‖u‖Hl(Rn),

for 0 ≤ s ≤ min{q, min{l, k + 1}} = min{l, q} (since q < k + 1), where
µ = min{k+1−s, l−s}. This is (3.56), with gh =

∑
l∈Zn

Ω
wh

l φh
l

∣∣
Ω
, t = k+1,

and k∗ = q.

We now show that V k,q
Ω,h satisfies the local assumption, LA.

Theorem 3.7. Suppose φ ∈ Hq(Rn), where 0 ≤ q ≤ k + 1, has compact
support and is quasi-reproducing of order k. Then V k,q

Ω,h satisfies the local
assumption, LA.

Proof. Suppose u ∈ H l(Ω) such that supp u = S ⊂ Ω. Consider the
approximation of u, obtained in Theorem 3.5, namely

gh =
∑
j∈Zn

Ω

wh
j φh

j . (3.57)

A careful study of the proofs of Theorems 3.5 and 3.4, and considering the
zero extension of u outside Ω, reveals that, for j ∈ Z

n
Ω,

wh
j = 0, if and only if Bj

ρ̄h ∩ S = ∅.

Now, for j ∈ Z
n
Ω such that wh

j 	= 0, we know that ηh
j = supp φh

j ⊂ Bj
ρh.

Therefore, Sh = supp gh = {x ∈ R
n : d(x, S) ≤ (ρ̄ + ρ)h}, and so we can

take λ = (ρ̄+ρ) in the definition of LA. For small h, we have Sh ⊂ Ω. Hence
V k,q

Ω,h satisfies the local assumption, LA.

Remark 15. The particle space V k,q
h is (k + 1, q)-regular and satisfies the

local assumption, LA, for Ω = R
n.

We note that the particle spaces V k,q
Ω,h and V k,q

h will also satisfy the inverse
assumption, IA, if additional conditions are imposed on the shape func-
tions {φh

j }. We will formulate these conditions in Section 3.3 in the context
of non-uniformly distributed particles; the corresponding conditions on the
shape functions associated with uniformly distributed particles can then be
obtained as a special case.
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3.3. Approximation by particle shape functions associated with arbitrary
(non-uniformly distributed) particles in R

n: the h-version

In this section we will generalize the major part of Theorem 3.4.
Suppose {Xν}ν∈N is a family of countable subsets of R

n; the family is
indexed by the parameter ν, which varies over the index set N . The points
in Xν are called particles, and will be denoted by x, to distinguish them
from general points in R

n. If it is necessary to emphasize that x ∈ Xν , we
will write x = xν . With each xν ∈ Xν we associate

• hν
xν = hν

x, a positive number;

• ων
xν = ων

x, a bounded domain in R
n;

• φν
xν = φν

x, a function in Hq(Rn), with q ≥ 0 and with ην
xν = ην

x ≡
supp φν

xν assumed compact.

The numbers hν
xν = hν

x will be referred to as the sizes of the particles x,
and the functions φν

xν are called the particle shape functions. For a given
ν ∈ N , let

Mν =
{
Xν , {hν

x, ων
x, φν

x}x∈Xν

}
.

Mν will be referred to as a particle-shape function system – and {Mν}ν∈N

as a family of particle-shape function systems. This nomenclature is similar
to that used in the FEM when we speak of a triangulation and a family of
triangulations.

Regarding the particle-shape function system, we make several assump-
tions.

A1. For each ν, ⋃
x∈Xν

ων
x = R

n,

i.e., for each ν, {ων
x}x∈Xν is an open cover of R

n.

A2. For x ∈ Xν , let
Sν

x ≡ {y ∈ Xν : ων
x ∩ ων

y 	= ∅}.

There is a constant κ < ∞, which may depend on {Mν}ν∈N , but
neither on ν nor on x ∈ Xν , such that

card Sν
x ≤ κ, for all x ∈ Xν and all ν ∈ N.

A3. For all x ∈ Xν , and ν ∈ N , x ∈ η̊ν
x and η̊ν

x ⊂ ων
x.

A4. For x ∈ Xν , let
Ων

x =
⋃

y∈Qν
x

ων
y ,
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where
Qν

x ≡ {y ∈ Xν : ην
y ∩ ων

x 	= ∅}.

There is a 0 < ρ̄ < ∞, which may depend on {Mν}ν∈N but is inde-
pendent of x and ν, such that

Ων
x ⊂ B

x
ρ̄hν

x
, for all x ∈ Xν and ν ∈ N,

where B
x
ρ̄hν

x
is the ball of radius ρ̄hν

x centred at x, namely,

B
x
ρ̄hν

x
= {x ∈ R

n : ‖x − x‖ ≤ ρ̄hν
x}.

A5. For each x ∈ Xν , there is a one-to-one mapping Aν
x : Pk → Pk such

that∑
y∈Qν

x

(Aν
xp)(y)φν

y(x) = p(x), for x ∈ ων
x, and any p ∈ Pk, (3.58)

and

‖Axp‖L2(ων
y ) ≤ C‖p‖L2(ων

y ), for all p ∈ Pk, y ∈ Qν
x, and x ∈ Xν .

A6. For any 0 ≤ s ≤ q,

‖φν
y‖Hs(ων

x) ≤ C(hν
y)−s+n/2, for all y ∈ Qν

x.

The constant C may depend on {Mν}ν∈N , but is independent of y, x,
and ν.

A7. There is a constant C such that

‖w‖L∞(ων
y ) ≤ C(hν

y)−n/2‖w‖L2(ων
y ), for any w ∈ Pk,

where C is independent of y and ν.

Remark 16. From the definitions of Qν
x and Sν

x , and assumption A3, it is
clear that Qν

x ⊂ Sν
x . Hence from assumption A2, it is immediate that

card Qν
x ≤ κ. (3.59)

We could, of course, have stated (3.59) as an assumption, but have chosen
to state card Sν

x ≤ κ as an assumption because, generally, Sν
x is easier to

work with than Qν
x. We also note that assumptions A1–A4 imply that, for

any x ∈ R
n,

card {x ∈ Xν : x ∈ η̊ν
x} ≤ κ, for all ν ∈ N. (3.60)

Remark 17. We note that the left-hand side of (3.58) in A5 is defined for
all x ∈ R

n, but the equality is required to hold only for x ∈ ων
x.
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Remark 18. Note that assumptions A1–A7 can be thought of as assump-
tions on Mν , for each ν ∈ N ; they are assumptions on {Mν}ν∈N in that
they are assumptions on Mν for each ν and that the constants in the as-
sumptions do not depend on ν.

Remark 19. Assumption A5 effectively defines the notion of quasi-repro-
ducing shape functions φν

x of order k. Note that the condition is local: the
operator Aν

x depends on x, the sum is taken only over y ∈ Qν
x, and the

equation holds only for x ∈ ων
x. The shape functions φν

x are said to be
reproducing of order k if∑

y∈Xν

p(y)φν
y(x) = p(x), for x ∈ R

n and any p ∈ Pk.

If the shape functions φν
x are reproducing of order k, then it is immediate

that they satisfy A5 with Aν
x equal to the identity mapping for each x.

Remark 20. Assumption A5 implies⋃
x∈Xν

η̊ν
x = R

n, for each ν.

Remark 21. Consider uniformly distributed particles, xh
j , and associated

particle shape functions, φh
j , as defined in Section 3.2. Then with xν = xh

j ,
hν

x = h, φν
x = φh

j , and ων
x = ωh

j , as defined in the proof of Theorem 3.4,
the associated particle-shape function system satisfies assumptions A1–A7.
Note that Aν

x = Ah
xh

j
= Ah satisfies A5.

Suppose {Mν}ν∈N is a family of particle-shape function systems, satisfy-
ing A1–A7. Define

V
k,q
ν = span {φν

x : x ∈ Xν}, for each ν ∈ N. (3.61)

The next theorem gives an approximation error estimate when a function
u, defined on R

n, is approximated by an appropriate function in V
k,q
ν , ν ∈ N .

Theorem 3.8. Suppose the family {Mν}ν∈N of particle-shape function
systems satisfies A1–A7, and hν

x ≤ 1 for x ∈ Xν , ν ∈ N . Suppose∑
x∈Xν

‖u‖2

H
rν
x+1

(B
x

ρ̄hν
x
)
< ∞, where rν

x ≤ k, for all x ∈ Xν and ν ∈ N,

(3.62)
where ρ is introduced in A4. Further, suppose that operators Aν

x, introduced
in A5, satisfy

‖(Aν
x −Aν

y)p‖H0(ων
y ) ≤ C(hν

x)rν
x+1‖p‖H0(ων

y ), for all p ∈ Pk, y ∈ Qν
x,

(3.63)
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for all x ∈ Xν , ν ∈ N , where C is independent of x and ν. Then there are
weights wν

y ∈ R, for y ∈ Xν and for all ν ∈ N , such that

∥∥∥∥∥u −
∑

y∈Xν

wν
yφν

y

∥∥∥∥∥
Hs(Rn)

≤ C

( ∑
y∈Xν

(hν
y)2(rν

y+1−s)‖u‖2

H
rν
y+1

(B
y

ρ̄hν
y
)

)1/2

, (3.64)

for 0 ≤ s ≤ inf{q, rν
y + 1 : y ∈ Xν , ν ∈ N}. The constant C depends on the

constants in Assumptions A1–A7 and on (3.63), but neither on u nor on ν.

Note. If {φν
x} is reproducing of order k, then (3.63) is trivially satisfied

(cf. Remark 19). Since shape functions that are reproducing of order k
are mainly used in practice, we have not included (3.63) in the set of basic
assumptions (A1–A7).

Proof. The proof of this result is analogous to the proof of Theorem 3.4.

1. The sets ων
x play the role of the sets ωh

j in the proof of Theorem 3.4.
The sets Qν

x, Ων
x, B

x
ρ̄hν

x
, and the mapping Aν

x play the roles of the sets

Ah
j , Ωh

j , Bj
ρ̄h, and the mapping Ah

j , respectively, in the proof of Theorem 3.4.
Assumptions A1–A7 state the properties of these sets and the mappings we
will need in this proof.

2. For any y ∈ Xν , since u ∈ H
rν
y+1(B

y

ρ̄hν
y
), it is well known that there is a

polynomial py,ν = p
y,ν

k of degree ≤ k, such that

‖u − p
y,ν

k ‖
Hs(B

y

ρ̄hν
y
)
≤ C(hν

y)
rν
y+1−s‖u‖

H
rν
y+1

(B
y

ρ̄hν
y
)
, (3.65)

for 0 ≤ s ≤ rν
y + 1 ≤ k + 1, where C is independent of u, ν and y, but does

depend on k (p
y,ν

k can, in fact, be selected so that its degree ≤ rν
y ). Define

the weights

wν
y = (Aν

yp
y,ν)(y), (3.66)

where Aν
y is the operator introduced in assumption A5.

Let x ∈ Xν be fixed. We will work with the polynomial px,ν , which
satisfies (3.65) with y = x, as well as the polynomial py,ν . Using (3.66)
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we find ∥∥∥∥∥u −
∑

y∈Xν

wν
yφν

y

∥∥∥∥∥
Hs(ων

x)

≤
∥∥∥∥∥u −

∑
y∈Qν

x

wν
yφν

y

∥∥∥∥∥
Hs(ων

x)

≤
∥∥∥∥∥u −

∑
y∈Qν

x

(Aν
x px,ν)(y)φν

y

∥∥∥∥∥
Hs(ων

x)

+
∑

y∈Qν
x

∣∣(Aν
x px,ν)(y) − (Aν

y py,ν)(y)
∣∣ ‖φν

y‖Hs(ων
x). (3.67)

We now estimate the two terms on the right-hand side of (3.67).

3. From assumption A5, we know that∑
y∈Qν

x

(Aν
xp)(y)φν

y(x) = p(x), for x ∈ ων
x, and any p ∈ Pk.

Using this formula and (3.65) with y = x, we obtain the estimate∥∥∥∥∥u −
∑

y∈Qν
x

(Aν
x px,ν)(y)φν

y

∥∥∥∥∥
Hs(ων

x)

≤ ‖u − px,ν‖Hs(ων
x)

≤ C(hν
x)rν

x+1−s‖u‖
H

rν
x+1

(B
x

ρ̄hν
x
)

(3.68)

for the first term.
Using assumption A6, we have

‖φν
y‖Hs(ων

z ) ≤ C(hν
y)

−s+n/2, for all y ∈ Qν
x.

Thus ∑
y∈Qν

x

∣∣(Aν
x px,ν)(y) − (Aν

y py,ν)(y)
∣∣ ‖φν

y‖Hs(ων
x)

≤
∑

y∈Qν
x

(hν
y)−s+n/2

∣∣(Aν
x px,ν)(y) − (Aν

y py,ν)(y)
∣∣. (3.69)

It remains to estimate the right-hand side of this inequality.
For y ∈ Qν

x, we have ων
y ⊂ Ων

x, and hence ων
y ⊂ B

x
ρ̄hν

x
, using assumption A4.
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Also ων
y ⊂ B

y

ρ̄hν
y
. Thus, using (3.65) with s = 0, we have

‖px,ν − py,ν‖H0(ων
y )

≤ ‖px,ν − u‖H0(ων
y ) + ‖u − py,ν‖H0(ων

y )

≤ (hν
x)rν

x+1‖u‖
H

rν
x+1

(B
x

ρ̄hν
x
)
+ (hν

y)rν
y+1‖u‖

H
rν
y+1

(B
y

ρ̄hν
y
)
. (3.70)

Now, using assumption A7, we have∣∣(Aν
x px,ν)(y) − (Aν

y py,ν)(y)
∣∣

≤
∣∣[(Aν

x −Aν
y)p

x,ν ](y)
∣∣+ ∣∣[Aν

y(p
x,ν − py,ν)](y)

∣∣
≤ ‖(Aν

x −Aν
y)p

x,ν‖L∞(ων
y ) + ‖Aν

y(p
x,ν − py,ν)‖L∞(ων

y )

≤ C(hν
y)

−n/2
{
‖(Aν

x −Aν
y)p

x,ν‖H0(ων
y )

+ ‖Aν
y(p

x,ν − py,ν)‖H0(ων
y )

}
. (3.71)

Also, using assumption A5 and (3.70), we obtain

‖Aν
y(p

x,ν − py,ν)‖H0(ων
y )

≤ C‖px,ν − py,ν‖H0(ων
y )

≤ C
{
(hν

x)rν
x+1‖u‖

H
rν
x+1

(B
x

ρ̄hν
x
)
+ (hν

y)
rν
y+1‖u‖

H
rν
y+1

(B
y

ρ̄hν
y
)

}
. (3.72)

Moreover, from (3.63), we have

‖(Aν
x −Aν

y)p
x,ν‖H0(ων

y ) ≤ (hν
x)rν

x+1‖px,ν‖H0(ων
y ), (3.73)

and from (3.65), with y = x, and recalling that hν
x ≤ 1, we get

‖px,ν‖H0(ων
y ) ≤ ‖px,ν − u‖H0(ων

y ) + ‖u‖H0(ων
y )

≤ C(hν
x)rν

x+1‖u‖
H

rν
x+1

(B
x

ρ̄hν
x
)
+ ‖u‖H0(ων

y )

≤ C‖u‖
Hrν

x+1(B
x

ρ̄hν
x
)
. (3.74)

Combining (3.71)–(3.74), we have∣∣(Aν
x px,ν)(y) − (Aν

y py,ν)(y)
∣∣ (3.75)

≤ C(hν
y)

−n/2
{
(hν

x)rν
x+1‖u‖

H
rν
x+1

(B
x

ρ̄hν
x
)
+ (hν

y)rν
y+1‖u‖

H
rν
y+1

(B
y

ρ̄hν
y
)

}
.

Then we combine (3.69), (3.75), (3.59), and assumption A2 (see (3.59)),
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to obtain∑
y∈Qν

x

∣∣(Aν
x px,ν)(y) − (Aν

y py,ν)(y)
∣∣‖φν

y‖Hs(ωω
x )

≤ C
{
κ(hν

x)rν
x+1‖u‖

H
rν
x+1

(B
x

ρ̄hν
x
)
+
∑

y∈Qν
x

(hν
y)rν

y+1‖u‖
H

rν
y+1

(B
y

ρ̄hν
y
)

}

≤ C
∑

y∈Qν
x

(hν
y)rν

y+1‖u‖
H

rν
y+1

(B
y

ρ̄hν
y
)
, (3.76)

which is an estimate for the second term in (3.67). Thus, from (3.67), (3.68),
and (3.76), we have∥∥∥∥∥u −

∑
y∈Qν

x

wν
yφν

y

∥∥∥∥∥
Hs(ων

x)

≤ C
∑

y∈Qν
x

(hν
y)

rν
y+1‖u‖

H
rν
y+1

(B
y

ρ̄hν
y
)
. (3.77)

4. It remains to estimate ‖u−
∑

y∈Xν wν
yφν

y‖Hs(Rn). Using (3.77), which is
valid for all x ∈ Xν , and assumptions A1, A2, A4, we obtain∥∥∥∥∥u −

∑
y∈Xν

wν
yφν

y

∥∥∥∥∥
2

Hs(Rn)

≤
∑

x∈Xν

‖u −
∑

y∈Xν

wν
yφν

y‖2
Hs(ων

x)

≤ C
∑

x∈Xν

∑
y∈Qν

x

(hν
y)

2(rν
y+1−s)‖u‖2

H
ry+1 (B

y

ρ̄hν
y
)

≤ C
∑

y∈Xν

(hν
y)2(rν

y+1−s)‖u‖2
H

ry+1 (B
y

ρ̄hν
y
)
, (3.78)

which is (3.64).

It will be useful to state estimate (3.64) in Theorem 3.8 in certain alter-
native ways. Given a family of particle-shape function systems {Mν}ν∈N

satisfying A1–A7, define

hν = sup
x∈Xν

hν
x, for each ν. (3.79)

With this definition, from (3.64) we have

∥∥∥∥∥u −
∑

y∈Xν

wν
yφν

y

∥∥∥∥∥
Hs(Rn)

≤ C


 ∑

y∈Xν

(hν)2(rν
y+1−s)‖u‖

H
rν
y+1

(Bν
ρ̄hν

y
)




1/2

.

(3.80)
Now, if rν

xν = k′, where 0 ≤ k′ ≤ k, for all y ∈ Xν and ν, then (3.80) leads
to the following result.
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Theorem 3.9. Suppose the family {Mν}ν∈N of particle-shape function
systems satisfies A1–A7, (3.63), and in addition, suppose hν ≤ 1, for all ν.
Suppose ‖u‖Hk′+1(Rn) < ∞, where 0 ≤ k′ ≤ k. Then there are weights
wν

y ∈ R such that∥∥∥∥∥u −
∑

y∈Xν

wν
yφν

y

∥∥∥∥∥
Hs(Rn)

≤ C(hν)k′+1−s‖u‖Hk′+1(Rn), (3.81)

for 0 ≤ s ≤ min(q, k′ + 1), where C is independent of u and ν.

We note that if hν1 < hν2 , ν1, ν2 ∈ N , then we would view Mν1 as a
‘refinement’ of Mν2 .

There is yet another way to state the estimate (3.81). Let 0 < h ≤ 1, and
suppose {Mν}ν∈N , a family of particle-shape function systems satisfying
A1–A7, (3.63), and in addition,

hν = sup
xν∈Xν

hν
xν ≤ h, for each ν. (3.82)

We can now think of ν = ν(h) as determined by h, although, of course,
many particle-shape function systems satisfy (3.82). We can, in fact, think
of having a one-to-one correspondence between ν and h. Thus we can regard
h as the parameter and write a family of particle-shape function systems as

{Mh}0<h≤1 = {Xh, {hh
x, ωh

x , φh
x}x∈Xh}0<h≤1

instead of {Mν}ν∈N . With this understanding that ν = ν(h), the estimate
(3.81) can be written as∥∥∥∥∥u −

∑
y∈Xh

wh
yφh

y

∥∥∥∥∥
Hs(Rn)

≤ Chk+1−s‖u‖Hk+1(Rn). (3.83)

We are naturally interested in having h ↓ 0, and hence in considering
ν(h)s for which hν(h) ↓ 0. More specifically, we will often consider a sequence
hm ↓ 0, and the corresponding sequence of particle systems Mν1 , Mν2 , . . . ,
where νl = ν(hl).

We remark that the estimate (3.64) is stronger than (3.81) and (3.83),
in that (3.64) uses hν

xν instead of the larger hν , and (3.64) allows a more
general regularity assumption on the function u. The viewpoint outlined in
this paragraph is similar to the usual view of meshes in the FEM.

For a given family {Mν}ν∈N of particle-shape function systems, we de-
fined the space V

k,q
ν in (3.61). With h, 0 < h ≤ 1, as the parameter, i.e., for

a given family Mh, 0 < h ≤ 1, we will use the space

V
k,q
h ≡ V

k,q
ν(h) = span {φh

x : x ∈ Xh}. (3.84)
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So far, we have discussed the approximation of a function u defined on R
n,

by particle shape functions. We now consider u defined on Ω, where Ω is a
bounded domain, with Lipschitz-continuous boundary, in R

n. We now show
that functions in V

k,q
Ω,h, defined by

V
k,q
Ω,h = span{φh

x

∣∣
Ω

: φh
x ∈ V

k,q
h , for x ∈ Ah

Ω}, (3.85)

where

Ah
Ω = {x ∈ Xh : η̊h

x ∩ Ω 	= ∅},

provide accurate approximation of functions u defined on Ω.

Theorem 3.10. Suppose Mh, 0 < h ≤ 1, is a family of particle-shape
function systems satisfying A1–A7 and (3.63). Let Ω ⊂ R

n be a bounded
domain with Lipschitz-continuous boundary, and suppose u ∈ Hk′+1(Ω),
where 0 ≤ k′ ≤ k. Then there are weights wh

y ∈ R such that∥∥∥∥∥u −
∑

y∈Ah
Ω

wh
yφh

y

∥∥∥∥∥
Hs(Ω)

≤ Chk′+1−s‖u‖Hk′+1(Ω), (3.86)

for 0 ≤ s ≤ min(q, k′ + 1), where the constant C is independent of u and h.

The proof of this theorem is based on using (3.83) on the extension ū =
Eu, and is similar to the proof of Theorem 3.5. We omit the proof of
this theorem. We note that the approximation

∑
y∈Ah

Ω
wh

yφh
y , obtained in

Theorem 3.10, is such that ∑
y∈Ah

Ω

wh
yφh

y

∣∣∣
Ω
∈ V

k,q
Ω,h.

In Section 3.2, we reviewed the notion of (t, k∗)-regular system Sh(Ω). In
the next theorem, we show that V

k,q
Ω,h is a (k + 1, q)-system.

Theorem 3.11. Suppose Mh, 0 < h ≤ 1, is a family of particle-shape
function systems satisfying A1–A7 and (3.63). Let Ω ⊂ R

n be a bounded
domain with Lipschitz-continuous boundary. Then V

k,q
Ω,h is a (k+1, q)-regular

system, where k is the order of quasi-reproducing shape functions in Mh.

The proof of this theorem is similar to the proof of Theorem 3.6, and will
be omitted.

Remark 22. The space V
k,q
Ω,h satisfies the local assumption, LA.
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Quasi-uniform particle-shape function system
We will call a family of particle-shape function systems {Mh}0<h≤1 quasi-
uniform if there is a β, 1 < β < ∞, such that

β−1 ≤
hh

x

hh
y

≤ β, for all x, y ∈ Xh and 0 < h ≤ 1. (3.87)

We note that (3.87) is equivalent to

β−1 ≤ h

hh
y

≤ β, for all y ∈ Xh and 0 < h ≤ 1, (3.88)

where h is defined by (3.82).

Remark 23. We can also define uniform particle-shape function system
by imposing the condition

hh
x = hh

y , for all x, y ∈ Xh and 0 < h ≤ 1.

We note that the system with uniformly distributed particles and the as-
sociated shape functions as defined in Section 3.1 is uniform. But uniform
particle-shape function systems may have particles that are not uniformly
distributed.

Consider a family of particle-shape function systems {Mh}0<h≤1 satisfy-
ing assumptions A1–A7. Let Ω ⊂ R

n be a bounded domain, and suppose
Mh satisfies the following additional assumptions:

• Mh is quasi-uniform, i.e., (3.88) holds;

• for all x ∈ Ah
Ω, there is a β > 0 such that, for 0 ≤ s ≤ q,

β−1h
n
2
−s ≤ ‖φh

y‖Hs(ωh
x∩Ω) ≤ βh

n
2
−s, for all y ∈ Qh

x, (3.89)

where Qh
x = {y ∈ Xh : ηh

y ∩ ωh
x 	= ∅} (cf. A4);

• for all wy ∈ R, for y ∈ Qh
x, and x ∈ Ah

Ω, there exists C > 0, independent
of x, such that

h−s


 ∑

y∈Qh
x

|wy|2hn




1/2

≤ C

∥∥∥∥∥∥
∑

y∈Qh
x

wyφ
h
y

∥∥∥∥∥∥
Hs(ωh

x∩Ω)

, for 0 ≤ s ≤ q.

(3.90)

Then the particle space V
k,q
Ω,h satisfies the inverse assumption IA, introduced

in Section 3.2. To see this, consider x ∈ Ah
Ω. Then, using (3.89) and (3.90),
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we have∥∥∥∥∥∥
∑

y∈Qh
x

wyφ
h
y

∥∥∥∥∥∥
Hq(ωh

x∩Ω)

≤
∑

y∈Qh
x

|wy| ‖φh
y‖Hq(ωh

x∩Ω)

≤ Ch
n
2
−q


 ∑

y∈Qh
x

|wy|2



1/2

= Chs−qh−s


 ∑

y∈Qh
x

|wy|2hn




1/2

≤ Chs−q
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∑

y∈Qh
x

wyφ
h
y
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Hs(ωh

x∩Ω)

, (3.91)

where C depends on κ (cf. A2). Thus∥∥∥∥∥∥∥
∑

y∈Ah
Ω

wyφ
h
y

∥∥∥∥∥∥∥
2

Hq(Ω)

≤
∑

x∈Ah
Ω
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∑

y∈Qh
x

wyφ
h
y
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2

Hq(ωh
x∩Ω)

≤ Ch2(s−q)
∑

x∈Ah
Ω

∥∥∥∥∥∥
∑

y∈Qh
x

wyφ
h
y

∥∥∥∥∥∥
2

Hs(ωh
x∩Ω)

≤ Ch2(s−q)

∥∥∥∥∥∥∥
∑

y∈Ah
Ω

wyφ
h
y

∥∥∥∥∥∥∥
2

Hs(ωh
x∩Ω)

.

Since any element g of V
k,q
Ω,h is of the form

∑
y∈Ah

Ω
wyφ

h
y

∣∣
Ω
, we have shown

that V
k,q
Ω,h satisfies the inverse assumption, IA. We summarize the above

discussion in the following theorem.

Theorem 3.12. Suppose Mh, 0 < h ≤ 1, is a family of quasi-uniform
particle-shape function systems satisfying A1–A7, (3.89), and (3.90). Let
Ω ⊂ R

n be a bounded domain with Lipschitz-continuous boundary. Then
V

k,q
Ω,h satisfies the inverse assumption, IA.

Remark 24. We can show that the particle space V
k,q
h also satisfies the

inverse assumption IA, if Mh, satisfying A1–A7, also satisfies (3.89) and
(3.90) with Ω = R

n.
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So far we have addressed the approximation properties of the spaces V
k,q
h

and V
k,q
Ω,h, i.e., approximation by the functions of the form∑

y∈Xh

wh
yφh

y and
∑

y∈Ah
Ω

wh
yφh

y .

We will now present the approximation properties of the space

W
k′,q
Ω,h =

{
v
∣∣
Ω

: v =
∑

x∈Ah
Ω

φh
xψh

x , ψh
x ∈ Pk′

(η̊h
x)

}
,

where {φh
x} form a partition of unity. The space W

k′,q
Ω,h was used in Taylor,

Zienkiewicz and Onate (1998), and is a special case of the space V ν con-
sidered in Section 6. The approximation properties of the space W

k′,q
Ω,h are

similar to the approximation properties of V
k,q
Ω,h.

Theorem 3.13. Suppose Mh, 0 < h ≤ 1, is a family of particle-shape
function system that satisfy A1–A7 with k = 0 and Ah

x = I, which implies
that the shape functions {φh

x} form a partition of unity. Let Ω ∈ R
n be

a bounded domain with Lipschitz-continuous boundary and suppose u ∈
Hk′+1(Ω), where 0 ≤ k′. Then there exist ψh

x ∈ Pk′
(η̊h

x) such that∥∥∥∥∥u −
∑

x∈Ah
Ω

φh
xψh

x

∥∥∥∥∥
H1(Ω)

≤ Chk′‖u‖Hk′+1(Ω),

where C is independent of u and h.

The proof of this result can be obtained directly from Theorems 6.1–6.3,
and we will comment on the proof in Section 6.

Remark 25. In Theorem 3.13, we assumed that {φh
x} are reproducing of

order k = 0 (i.e., they form a partition of unity) because, as indicated
in Section 4, such shape functions are easier to construct. The general case
where {φh

x} are assumed to be quasi-reproducing of order k will be addressed
in a forthcoming paper. In this situation, for 0 ≤ s ≤ q, we expect the error
estimate to be∥∥∥∥∥u −

∑
x∈Ah

Ω

φh
xψh

x

∥∥∥∥∥
Hs(Ω)

≤ Chk′+k+1−s‖u‖Hk′+k+1(Ω).

Remark 26. Note that in the situation addressed in Theorem 3.13, we
associate with each particle x ∈ Xh, multiple shape functions

φh
xψh

x,j , j = 1, 2, . . . , N,
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where {ψh
x,j}N

j=1 is a basis for Pk′
(η̊h

x).This is in contrast to the situation
discussed earlier in this section, where with each particle we associated only
the single shape function φh

x. In a forthcoming paper, we will address, in a
more general context, the use of multiple shape functions associated with a
single particle.

4. Construction and selection of particle shape functions

In Section 3, we presented an abstract description of particle-shape func-
tion systems with respect to uniform as well as non-uniform distribution
of particles. We showed that if these particle-shape function systems sat-
isfy certain properties (assumptions A1–A7 and (3.63)), they will have good
approximation properties. In this section we will present an example of a
particular particle-shape function system, where the shape functions are re-
producing of order k, and show that under certain conditions they satisfy
assumptions A1–A7, and hence have good approximation properties. We
note that (3.63) is trivially satisfied. This example will also show that a
wide variety of particle shape functions can be constructed. Therefore it
is important to address the issue of selecting an appropriate class of shape
functions that would yield efficient approximation of the solution of a par-
ticular problem, or a class of problems. We also present an interpolation
result that will indicate a procedure for choosing a class of shape functions,
among a given collection of such classes. Such shape functions will yield
the smallest value of the usual Sobolev norm interpolation error, when the
interpolated function is included in a higher-order Sobolev space.

4.1. An example of a class of particle shape functions

Several particle shape functions have been developed over the past decade.
SPH shape functions (Gingold and Monaghan 1977) were introduced in the
context of fluid dynamics, whereas Shepard functions (Shepard 1968) and
MLS shape functions (Lancaster and Salkauskas 1981) were introduced in
the context of data fitting with respect to irregularly distributed particles in
higher dimensions. In the 1990s, RKP (reproducing kernel particle) shape
functions were introduced (Liu, Jun and Zhang 1995) in the context of
approximation of solutions of partial differential equations. In this paper,
we describe the construction of RKP shape functions for non-uniform as well
as uniform distribution of particles, and relate them to the abstract setting
given in Section 3. Specifically, we will show that the resulting particle-shape
function system satisfies assumptions A1–A7.

Non-uniformly distributed particles
For ν ∈ N , N an index set, let Xν = {xν

i }i∈Z where xν
i ∈ R

n. With each
xν

i ∈ Xν we associate a positive number hν
i . We consider a fixed ν and often
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suppress the superscript ν, for example, we write xi and hi instead of xν
i

and hν
i , respectively. We will comment on ν when appropriate.

Let w(x) ≥ 0 be a continuous function with compact support, specifically,

η ≡ supp w(x) = BR(0), R > 0. (4.1)

The function w(x) is called a weight function (or window function).
The commonly used weight functions in one dimension are as follows.

(a) Gaussian:

w(x) =




eδ(x/R)2 − eδ

1 − eδ
, |x| ≤ R

0, |x| ≥ R,

(4.2)

where δ > 0.

(b) cubic spline:

w(x) =




2
3 − 4(x/R)2 + 4(|x|/R)3, |x| ≤ R/2
4
3 − 4(|x|/R) + 4(x/R)2 − 4

3(|x|/R)3, R/2 ≤ |x| ≤ R

0, |x| > R.

(4.3)
(c) conical:

w(x) =

{
[1 − (x/R)2]l, |x| ≤ R

0, |x| > R,
(4.4)

where l = 1, 2 . . . .

We note that one may consider nonsymmetric versions of some of these
weight functions, as was done in Armentano and Duran (2001).

In R
n, w(x) can be constructed from a one-dimensional weight function

w(x) (symmetric) as w(x) = w(‖x‖), where ‖x‖ is the Euclidean length of
x. Further, w(x) can also be constructed via w(x) =

∏n
j=1 w(jx), where

x = (1x, 2x, . . . , nx) ∈ R
n. Consequently, η will be an n-cube. However, we

will assume η given by (4.1) in this section.
For each j, we define

wj(x) = w

(
x − xj

hj

)
. (4.5)

Clearly,
ηj ≡ supp wj(x) = BRhj (xj). (4.6)

Let
Qi = {xj : η̊i ∩ η̊j 	= ∅}, (4.7)
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and assume that

∪j∈Z η̊j = R
n, (4.8)

card Qi ≤ κ, for all i ∈ Z, (4.9)

where κ is independent of i and ν.
For a given integer k, k ≥ 0, the RKP shape function φj(x), associated

with the particle xj , is defined by

φj(x) = wj(x)
∑
|α|≤k

(x − xj)αbα(x), (4.10)

where bα(x) are chosen so that∑
j∈Z

p(xj)φj(x) = p(x), for x ∈ R
n and p ∈ Pk(Rn), (4.11)

so that {φj(x)}j∈Z are reproducing of order k. This gives rise to a linear
system in bα(x), namely∑

|α|≤k

mα+β(x)bα(x) = δ|β|,0, for |β| ≤ k, (4.12)

where δ|β|,|α| is the Kronecker delta, and

mα(x) =
∑
j∈Z

wj(x)(x − xj)α.

It is clear from (4.6) and (4.10) that

supp φj(x) = supp wj(x) = ηj . (4.13)

We now briefly describe the derivation of (4.12). For a fixed y ∈ R
n,

consider

pβ(x) = (y − x)β , 0 ≤ |β| ≤ k.

Using p(x) = pβ(x) in (4.11), we get∑
j∈Z

(y − xj)βφj(x) = (y − x)β ,

and letting y = x in the above equality, we have∑
j∈Z

(x − xj)βφj(x) = δ|β|,0, 0 ≤ |β| ≤ k. (4.14)

Thus (4.11) implies (4.14); one can also show that (4.14) implies (4.11).
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Now using (4.10) in (4.14), we get

δ|β|,0 =
∑
j∈Z

(x − xj)βφj(x)

=
∑
j∈Z

(x − xj)βwj(x)
∑
|α|≤k

(x − xj)αbα(x)

=
∑
|α|≤k

bα(x)
∑
j∈Z

wj(x)(x − xj)α+β

=
∑
|α|≤k

mα+β(x)bα(x), (4.15)

which is (4.12).
We now consider the unique solvability of (4.11). For k = 0, the lin-

ear system (4.12) is m0(x)b0(x) =
[∑

i∈Z
wi(x)

]
b0(x) = 1. Assuming∑

i∈Z
wi(x) 	= 0, x ∈ R

n, we have b0(x) = 1/m0(x). Therefore from (4.10),
we have

φj(x) =
wj(x)∑
i∈Z

wi(x)
, j ∈ Z.

This expression for {φj(x)} gives another verification that they form a par-
tition of unity. These shape functions, introduced in Shepard (1968), are
called Shepard functions.

The unique solvability of (4.12), for k ≥ 1, depends on the weight func-
tions and on the distribution of the particles {xi} in R

n. The required
distribution of particles is in turn related to the interpolation problem in
R

n. It was shown in Han and Meng (2001) that a necessary condition for
unique solvability of (4.12) is that, for x ∈ R

n,

card A(x) ≥ dim Pk, (4.16)

where
A(x) = {xl : x ∈ η̊l}. (4.17)

For k = 1, Han and Meng (2001) showed that the linear system (4.12) is
nonsingular if the following conditions are satisfied.

(a) There are constants C1, C2 > 0, independent of ν, and h > 0, such that

C1 ≤ hi

h
≤ C2, for all i ∈ Z. (4.18)

(b) There are constants C̃1, C̃2 > 0, independent of ν, such that, for any
x ∈ R

n, there are (n + 1) particles xil ∈ A(x), l = 0, . . . , n, such that

min
0≤l≤n

w

(
x − xil

h

)
≥ C̃1 > 0 (4.19)
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and
Volume K(xi0 , xi1 , . . . , xin) ≥ C̃2h

n, (4.20)

where K(xi0 , xi1 , . . . , xin) is the simplex with vertices xi0 , xi1 , . . . , xin .

We will now cast RKP shape functions, discussed above, in the frame-
work of a particle-shape function system, introduced in Section 3.3. We
started with a collection of particles Xν = {xν

j }j∈Z, where xν
j ∈ R

n, and
positive numbers hν

j . Corresponding to each particle xν
j ∈ Xν , we associ-

ated, in (4.10), the RKP shape function, φν
j = φj with compact support

ην
j = ηj = BRhj (xj), where the parameter R was related to the weight func-

tion w(x). It was shown in Han and Meng (2001) that if w(x) ∈ Cq(Rn),
then φj ∈ Cq(Rn), and thus φj ∈ Hq(Rn); here we assume q = 1. We recall
that the conditions (4.8), (4.8), (4.16), (4.18)–(4.20) were required for the
construction of shape functions, φj , j ∈ Z. We let ων

j = ωj ≡ η̊j ; certainly
each ων

j is a bounded domain. We now show that the family of particle-shape
function systems {Mν}ν∈N , where

Mν =
{
Xν , {hν

i , ω
ν
i , φν

i }
}
,

with these choices for φν
i and ων

i , satisfies assumptions A1–A7 in Section 3.3.
We will continue to use the notation introduced earlier in this section, and
suppress ν; the statements of A1–A7 using this notation should be clear.

• Since ωi = η̊i for i ∈ Z, assumption A1 follows from (4.8). We also see
that the sets Sν

x ≡ Si and Qν
x ≡ Qi, introduced in assumptions A2 and

A4 are the same. Thus A2 follows from (4.9).
• Assumption A3 is immediate from the definition ωi.
• Since ωj = η̊j , the set Ων

x, introduced in assumption A4, is given by
Ων

x = Ωi = ∪xj∈Qi η̊j . Since each ηj is a ball of radius Rhj , it is easily
seen, using (4.18), that assumption A4 is satisfied with ρ̄ = 3RC2/C1.

• RKP shape functions, {φj}, considered here, are reproducing of order
k = 1, i.e., they satisfy (4.11) with k = 1. Thus A5 is satisfied with
Aν

x = Ai = I (identity), for all i ∈ Z, with k = 1.
• Han and Meng (2001) showed that, if the weight function w(x) ∈ Cq,

then
‖φi‖W s,∞(η̊i) ≤ C(hi)−s, for 0 ≤ s ≤ q and i ∈ Z.

Thus using a scaling argument and this estimate, we obtain

‖φi‖Hs(η̊i) ≤ C(hi)−s+n/2, for 0 ≤ s ≤ q and i ∈ Z, (4.21)

where h and hi satisfy (4.18). Recall that we assumed q = 1. Now let
xj ∈ Qi. Then

‖φj‖Hs(η̊i) = ‖φj‖Hs(η̊i∩η̊j) ≤ ‖φj‖Hs(η̊j),
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and combining this with (4.21), we get, for 0 ≤ s ≤ 1,

‖φj‖Hs(η̊i) ≤ C(hi)−s+n/2, for all xj ∈ Qi and i ∈ Z,

which is assumption A6 with q = 1.
• A scaling argument shows that assumption A7 is satisfied.

We remark that (3.60), together with condition (b) (following (4.18)), es-
tablishes a lower bound of κ, namely (n + 1) ≤ κ.

We have thus shown that assumptions A1–A7, with k = 1 and q = 1,
are satisfied by RKP particle-shape function systems provided (4.8), (4.9),
(4.16), (4.18)–(4.20) are satisfied. Thus we can apply Theorem 3.8 to obtain
an approximation error estimate for RKP particle-shape function systems.
Note that the condition (3.63) in Theorem 3.8 is trivially satisfied with
Aν

x = I for all x ∈ Xν . We remark that an interpolation error estimate,
under the assumptions (4.8), (4.9), (4.16), (4.18)–(4.20), was also obtained
in Han and Meng (2001).

We note that A1–A7 only guarantee good approximability of the shape
functions; they do not provide a recipe to construct particle shape functions
that are quasi-reproducing or reproducing of order k. In fact the availability
of such particle shape functions is assumed in A5. Further assumptions may
be needed to construct such shape functions; for example (4.16), (4.18)–
(4.20) were needed to construct RKP particle shape functions. Therefore,
there should be enough restrictions on the particle distributions and the
supports of shape functions for it to be possible to construct these shape
functions satisfying A1–A7, thereby ensuring good approximation proper-
ties.

Uniformly distributed particles
We consider the uniformly distributed particles xh

j = jh, j ∈ Z
n as in

Section 3.2. This is a special case of the non-uniformly distributed particles
considered in the first part of this section. For each xh

j , we define wh
j (x) =

w(x−xh
i

h ), where w(x) ≥ 0 is a continuous weight function with compact
support η = BR(0). Clearly, ηh

j ≡ supp wh
j (x) = BRh(xh

j ). It can be easily
shown that if R = 3

√
n/2 (in fact, we need only R >

√
n), then (4.8), (4.9)

with κ = (4R + 1)n, (4.18) with C1 = C2 = 1, and (4.20) with C̃2 = 1/2 are
satisfied. If w(x) = w(r), with r = ‖x‖, is monotonically decreasing in r,
then it can also be shown easily that (4.19) is satisfied with C̃1 = w(

√
n).

Therefore, RKP shape functions φh
i (x), associated with xh

i , for all i ∈ Z
n,

can be constructed using the procedure described in (4.10), (4.11) and (4.12)
for k = 1, namely

φh
j (x) = wh

j (x)
∑
|α|≤k

(x − xh
j )αbh

α(x), (4.22)
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where {bh
α(x)}|α|≤k is the solution of∑

|α|≤k

mh
α+β(x)bh

α(x) = δ|β|,0, |β| ≤ k, (4.23)

with k = 1, and

mh
α(x) =

∑
j∈Zn

wh
j (x)(x − xh

j )α. (4.24)

The shape functions {φh
j } satisfy∑

j∈Zn

p(xh
j )φh

j (x) = p(x), for all x ∈ R
n and p ∈ Pk(Rn). (4.25)

As with the non-uniformly distributed particles, we consider the family of
particle-shape function systems

Mh =
{
Xh, {hh

x, ωh
x , φh

x}x∈Xh

}
, 0 < h ≤ 1,

for RKP shape functions with respect to uniformly distributed particles, by
letting Xh = {x = xh

j : j ∈ Z
n} and using hh

x = h, ωh
x = ηh

j and φh
x = φh

j .
Note that here we used the parameter h instead of ν. We have shown
above that conditions (4.8), (4.9), (4.18)–(4.20) are satisfied, with w(x) =
w(r), a monotonically decreasing weight function in r, and R = 3

√
n/2.

Therefore, based on the discussion on RKP particle-shape function systems
for non-uniformly distributed particles, it clear that {Mh}0<h≤1 satisfies
assumptions A1–A7 with k = 1, ensuring good approximation properties of
the RKP shape functions.

We recall that in Section 3.1, the particle shape function φh
i (x) was de-

fined in (3.1) by scaling and translating the basic shape function φ(x) for
uniformly distributed particles, i.e., they were translation-invariant. We will
show that the RKP shape functions {φh

i }i∈Zn , constructed via (4.22) and
(4.23), also satisfy (3.1) with φ(x) = φ1

0(x) (i.e., with i = 0 and h = 1). We
assume that the linear system (4.23) is invertible for k ≥ 1.

From (4.22) and (4.23) with i = 0 and h = 1, we have

φ(x) = w(x)
∑
|α|≤k

xαb1
α(x), (4.26)

where b1
α(x) are the solutions of∑

|α|≤k

m1
α+β(x)b1

α(x) = δ|β|,0, for |β| ≤ k, (4.27)

and
m1

α(x) =
∑
j∈Zn

w(x − j)(x − j)α. (4.28)
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We replace x by x−xh
i

h in (4.27) and (4.28) to get

∑
|α|≤k

m1
α+β

(
x − xh

i

h

)
bα

(
x − xh

i

h

)
= δ|β|,0, for |β| ≤ k, (4.29)

where

m1
α

(
x − xh

i

h

)
=
∑
j∈Zn

w

(
x − xh

i

h
− j

)(
x − xh

i

h
− j

)α

=
∑
j∈Zn

w

(
x − xh

i+j

h

)(
x − xh

i+j

h

)α

=
1

h|α|

∑
j∈Zn

wh
j (x)(x − xh

j )α

=
1

h|α|m
h
α(x). (4.30)

Using (4.30) in (4.29), we get

∑
|α|≤k

1
h|α+β|m

h
α+β(x)bα

(
x − xh

i

h

)
= δ|β|,0,

and therefore∑
|α|≤k

mh
α+β(x)

1
h|α| bα

(
x − xh

i

h

)
= h|β|δ|β|,0 = δ|β|,0, for all |β| ≤ k. (4.31)

Since the {bh
α(x)} is the unique solution for (4.23), it is clear from (4.31)

that

bh
α(x) =

1
h|α| bα

(
x − xh

i

h

)
,

and thus from (4.26) we have

φ

(
x − xh

i

h

)
= w

(
x − xh

i

h

) ∑
|α|≤k

(
x − xh

i

h

)α

bα

(
x − xh

i

h

)

= wh
i (x)

∑
|α|≤k

(x − xh
i )α 1

h|α| bα

(
x − xh

i

h

)

= wh
i (x)

∑
|α|≤k

(x − xh
i )αbh

α(x)

= φh
i (x).
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Thus, for uniformly distributed particles, RKP shape functions satisfy (3.1),
i.e., they are translation-invariant.

Remark 27. To approximate functions defined on a bounded domain Ω,
we use the restrictions of RKP shape functions on Ω, as described in Sec-
tion 3.3 (cf. (3.85) and Theorem 3.10). We note that the RKP shape
functions corresponding to the particles near the boundary of Ω, as defined
here, are different from the RKP shape functions defined in Han and Meng
(2001) and Liu et al. (1995). But they are the same for particles inside
Ω, sufficiently away from the boundary ∂Ω. They are also the same when
Ω = R

n.

Remark 28. RKP shape functions are not available analytically in sim-
ple forms. Their values at a point x ∈ R

n are computed via (4.10), which
involves the solution of the linear system (4.12) for each x. Thus computa-
tion of RKP shape functions, which are reproducing of order k, is not easy,
especially for higher k. Moreover, as a consequence of (4.16), it is necessary
that the supports of these shape functions be large so that the linear system
(4.12) is invertible. We note that it is much easier to construct the shape
functions for the space W

l,q
Ω,h, introduced near the end of Section 3.3.

4.2. Interpolation and selection

In this section, we will address the interpolation of a function in terms of
particle shape functions, and will propose a procedure to select a shape
function that will yield efficient approximation. We consider uniformly dis-
tributed particles {xh

j } in R
n, and the associated particle shape functions

{φh
j }, defined in (3.1), where φ ∈ Hq(Rn) with q ≥ 1 has compact sup-

port; supp φ ⊂ BR(0). We have seen that {φh
j } is translation-invariant,

supp φh
j ∈ BRh(xh

j ), and in addition

‖φh
j ‖H1(Rn) ≤ hn/2−1‖φ‖H1(Rn). (4.32)

We assume that {φh
j } is reproducing of order k, i.e., (4.25) holds.

Let Ω be a bounded domain in R
n. We will consider a smooth function

u(x) defined in Ω and study the error u−Ĩhu, where Ĩhu is the ‘interpolant’
of u in terms of φh

j . The results in this subsection are from Babuška, Banerjee
and Osborn (200x), and we refer to this paper for some of the details that
we do not present here.

We now define the ‘interpolant’ Ĩhu of a function u. For any x ∈ R
n, let

Ah
x = {k ∈ Z

n : x ∈ η̊h
k}.
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Here Ah
x is called the influence set for the point x. Then (Ĩhu)(x) is defined as

(Ĩhu)(x) =
∑
j∈Ah

x

u(xh
j )φh

j (x). (4.33)

In (4.33), we, of course, assume that u(xh
j ) is defined for all j ∈ Ah

x. If
p ∈ Pk, then from (4.25) we have∑

j∈Ah
x

p(xh
j )φh

j (x) =
∑
j∈Zn

p(xh
j )φh

j (x) = p(x), for all x ∈ R
n, (4.34)

i.e., Ĩhp = p. Now let u ∈ Hs(Ω) with s > n/2. For some x ∈ Ω, the
particles xh

j for j ∈ Ah
x may be outside Ω, and u(xh

j ) may not be defined. To
define Ĩhu(x) for u ∈ Hs(Ω) and for all x ∈ Ω, we need an extension ū of u in
a ball BR0 containing Ω such that dist(∂Ω, ∂BR0) > ρh, and ū ∈ Hs(BR0).
Then,

(Ĩhu)(x) ≡ (Ĩhū)(x) =
∑
j∈Ah

x

ū(xh
j )φh

j (x), for x ∈ Ω, (4.35)

is well defined. For an extension ū, we may use ū = Eu, where Eu was
defined in (3.50). Thus, (Ĩhu)(x) for x ∈ Ω will depend on few values of
ū(xh

j ), where the particle xh
j is just outside Ω. We remark that Ĩhu is not

an interpolant of u in the usual sense, since, generally, φh
j (xh

i ) 	= δij , and
hence (Ĩhu)(xh

j ) 	= u(xh
j ).

We define the function

ξh
α(x) = xα −

∑
i∈Ah

x

(xh
i )αφh

i (x), |α| = k + 1, for x ∈ R
n. (4.36)

We will also use

ξα(x) ≡ ξ1
α(x) = xα −

∑
i∈A1

x

iαφ(x − i), |α| = k + 1, for x ∈ R
n, (4.37)

where A1
x is Ah

x with h = 1. These functions will play an important role in
the analysis presented in this subsection, as well as in Section 5. We note
that ξα(x) is the error between the polynomial xα, with |α| = k + 1, and its
interpolant when h = 1. In one dimension, we will write these functions as
ξh
k+1(x) and ξk+1(x) respectively.
We begin with certain results about these functions. We first present some

notation that will be used in these results. Let Ih
j be the cell centred at xh

j ,
defined by

Ih
j =

{
x : ‖x − xh

j ‖∞ ≡ max
i=1,...,n

|xi − xji | ≤ h/2
}
.
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For each Ih
j , we define

Ah
j = {k ∈ Z

n : η̊h
k ∩ Ih

j 	= ∅},
and

Bh
j = {∪k∈Ah

j
BRh(xh

k)} ∪ Ih
j .

We note that the cardinality of Ah
j is finite, and is bounded independently

of j and h. Further, there exists R̄ > 0, independent of j and h, such that
Bh

j ⊂ B̃h
j ≡ BR̄h(xh

j ) and ∪j∈ZnB̃h
j = R

n.

Lemma 4.1. ξh
α(x), with |α| = k + 1, is periodic, i.e.,

ξh
α(x + xh

j ) = ξh
α(x), for any xh

j . (4.38)

Proof. We first note that

(x + xh
j )α = xα + p(x; xh

j ), (4.39)

where p(x; xh
j ) is a polynomial in x of degree ≤ k with coefficients that

depend on xh
j . Now using (4.39), with x = xh

i , and the fact that the {φh
i } is

translation-invariant and reproducing of order k, we get∑
i∈Zn

(xh
i )αφh

i (x + xh
j ) =

∑
i∈Zn

(xh
i )αφh

i−j(x)

=
∑
i∈Zn

(xh
i+j)

αφh
i (x)

=
∑
i∈Zn

(xh
i + xh

j )αφh
i (x)

=
∑
i∈Zn

(xh
i )αφh

i (x) +
∑
i∈Zn

p(xh
i ; xh

j )φh
i (x)

=
∑
i∈Zn

(xh
i )αφh

i (x) + p(x, xh
j ). (4.40)

From (4.36), (4.39) and (4.40), we get

ξh
α(x + xh

j ) = xα −
∑
i∈Zn

(xh
i )αφh

i (x) = ξh
α(x),

which is the desired result.

Lemma 4.2. Let α = α(i), i = 1, . . . , Mk be an enumeration of the multi-
indices α with |α(i)| = k + 1. Let Ih

j be the cell centred at the particle xh
j .

Then, for dα ∈ R, we have∥∥∥∥∥
∑

|α|=k+1

1
α!

dαξh
α(x)

∥∥∥∥∥
2

H1(Ih
j )

= h2k+n
V

T (A + h2B)V, (4.41)
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where V = [dα(1), dα(2), . . . , dα(Mk)]T and A, B are Mk×Mk matrices given by

Alm =
∫

I

1
α(l)!α(m)!

∇ξα(l) · ∇ξα(m) dx, (4.42)

Blm =
∫

I

1
α(l)!α(m)!

ξα(l)ξα(m) dx, (4.43)

respectively, and I = [−1/2, 1/2]n.

Note. The matrices A and B are independent of Ih
j .

Proof. A simple scaling argument, used with (3.1), shows that

ξα

(
x

h

)
= h−(k+1)ξh

α(x).

Now, using the periodicity of ξh
α(x), a standard scaling argument, and this

identity, we have∥∥∥∥∥
∑

|α|=k+1

1
α!

dα∇ξh
α(x)

∥∥∥∥∥
2

H0(Ih
j )

=

∥∥∥∥∥
∑

|α|=k+1

1
α!

dα∇ξh
α(x)

∥∥∥∥∥
2

H0(Ih
0 )

= h2(k+1)

∥∥∥∥∥
∑

|α|=k+1

1
α!

dα∇
[
ξα

(
x

h

)]∥∥∥∥∥
2

H0(Ih
0 )

= h2(k+1)hn−2

∥∥∥∥∥
∑

|α|=k+1

1
α!

dα∇ξα(y)

∥∥∥∥∥
2

H0(I)

= h2k+n
V

T AV. (4.44)

Using a similar argument, we have∥∥∥∥∥
∑

|α|=k+1

1
α!

dαξh
α(x)

∥∥∥∥∥
2

H0(Ih
j )

= h2k+2+n
V

T BV.

Combining this identity with (4.44), we get∥∥∥∥∥
∑

|α|=k+1

1
α!

dαξh
α(x)

∥∥∥∥∥
2

H1(Ih
j )

= h2k+n
V

T (A + h2B)V,

which is the desired result.
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Lemma 4.3. Let Ih
j be the cell centred at xh

j , and consider the corre-
sponding set B̃h

j . Suppose u ∈ Hk+2+q(B̃h
j ) with q > n

2 when n ≥ 2, and
q = 0 when n = 1. Then,

(a) for any δ > 0,

‖u − Ĩhu‖2
H1(Ih

j )

≤ (1 + δ2)

∥∥∥∥∥
∑

|α|=k+1

1
α!

(Dαu)(xh
j )ξh

α(x)

∥∥∥∥∥
2

H1(Ih
j )

+
(

1 +
1
δ2

)
Ch2k+2

∑
|α|=k+2

‖Dαu‖2
Hq(B̃h

j )
. (4.45)

and

(b) for any δ > 0,∥∥∥∥∥
∑

|α|=k+1

1
α!

(Dαu)(xh
j )ξh

α(x)

∥∥∥∥∥
2

H1(Ih
j )

≤ (1 + δ2)‖u − Ĩhu‖2
H1(Ih

j )

+
(

1 +
1
δ2

)
Ch2k+2

∑
|α|=k+2

‖Dαu‖2
Hq(B̃h

j )
. (4.46)

The proof of this result is based on Taylor’s theorem, a bound on the
remainder in Taylor’s theorem, and a bound on the interpolant of the same
remainder. We do not include the proof here, and refer to Babuška et al.
(200x).

We will now study the interpolation error u − Ĩhu, where u is a smooth
function in Ω. An interpolation error estimate for RKP shape functions,
namely ‖u − Ĩhu‖W l,q(Ω) ≈ O(hk+1−l) for certain values of l, was proved in
Han and Meng (2001); the same estimate for q = 2 was proved in Liu, Li and
Belytschko (1997). A similar order of convergence in the H1,∞ norm was
also obtained for MLS shape functions in Armentano (2002) and Armentano
and Duran (2001). We note that the definitions of Ĩhu for the RKP shape
functions and MLS shape functions, presented in these papers, are slightly
different from our definition as given in (4.35). From the proof of the our
next result, we will obtain an estimate of ‖u − Ĩhu‖H1(Ω) where the shape
functions are reproducing of order k. Moreover, this theorem gives some
information on the size of hk‖u − Ĩhu‖H1(Ω), which facilitates the selection
of ‘good’ shape functions, which will be discussed later.

We now present the main result of this section. We define certain sets
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which will be used in this result:

Āh = {k ∈ Z
n : Ω ∩ I̊h

k 	= ∅}, Ω̄h = ∪j∈ĀhIh
j ,

Ah = {k ∈ Z
n : Ih

k ⊂ Ω}, Ωh = ∪j∈AhIh
j ,

Bh = {∪j∈AhB̃h
j } ∪ Ω, B̄h = ∪j∈ĀhB̃h

j .

It is clear that Ωh ⊂ Ω ⊂ Ω̄h, and |Ω − Ωh| → 0, |Ω̄h − Ω| → 0 as h → 0.
Also Ω ⊂ Bh ⊂ B̄h, and |Bh − Ω| → 0, |B̄h − Ω| → 0 as h → 0.

Theorem 4.4. (Babuška et al. (200x)) Let λ̄ be the largest eigenvalue
of the matrix A given in (4.42). Suppose q > n

2 when n ≥ 2, and q = 0
when n = 1. Then we have

sup
u∈Hk+2+q(Ω)

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
= λ̄, (4.47)

where
Qh(u) = |u|2Hk+1(Ω) + h

∑
|α|=k+2

‖Dαu‖2
Hq(Ω). (4.48)

Note. In (4.47), we consider u ∈ Hk+2+q(Ω) such that u /∈ Pk.

Proof. We will first prove that, for u ∈ Hk+2+q(Ω),

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
=

∫
Ω V T (x)AV (x) dx

|u|2
Hk+1(Ω)

, (4.49)

where
V T (x) = [Dα(1)u(x), Dα(2)u(x), . . . , Dα(Mk)u(x)],

and α(i), 1 ≤ i ≤ Mk, are the multi-indices with |α(i)| = k + 1.
Let u ∈ Hk+2+q(Ω), and suppose ū is an extension of u, as discussed

before. Since, Ω ⊂ Ω̄h, we have

‖u − Ĩhu‖2
H1(Ω) ≤ ‖ū − Ĩhū‖2

H1(Ω̄h) =
∑

j∈Āh

‖ū − Ĩhū‖2
H1(Ih

j )
.

Therefore, using (4.45), (4.41), and recalling that B̄h = ∪j∈ĀhB̃h
j , we get

for any δ > 0,

‖u − Ĩhu‖2
H1(Ω) ≤ (1 + δ2)

∑
j∈Āh

∥∥∥∥∥
∑

|α|=k+1

1
α!

(Dαū)(xh
j )ξh

α(x)

∥∥∥∥∥
2

H1(Ih
j )

+
(

1 +
1
δ2

)
Ch2k+2

∑
j∈Āh

∑
|α|=k+2

‖Dαū‖2
Hq(B̃h

j )
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≤ (1 + δ2)h2k
∑

j∈Āh

hnV T
j (A + h2B)Vj

+
(

1 +
1
δ2

)
Ch2k+2

∑
|α|=k+2

‖Dαū‖2
Hq(B̄h), (4.50)

where

V T
j = [Dα(1)ū(xh

j ), Dα(2)ū(xh
j ), . . . , Dα(Mk)ū(xh

j )].

Therefore, dividing (4.50) by h2kQh(u), where Qh(u) is defined in (4.48),
we get

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
≤ (1 + δ2)

∑
j∈Āh hnV T

j (A + h2B)Vj

Qh(u)

+
(

1 +
1
δ2

)
Ch2

∑
|α|=k+2 ‖Dαū‖2

Hq(B̄h)

Qh(u)
. (4.51)

A typical term of the quadratic form V T
j (A + h2B)Vj is

Dα(i)ū(xh
j )(Ail + h2Bil)Dα(l)ū(xh

j ).

Since

lim
h→0

∑
j∈Āh

hnDα(i)ū(xh
j )AilD

α(l)ū(xh
j ) =

∫
Ω

Dα(i)u(x)AilD
α(l)u(x) dx

and

lim
h→0

h2
∑

j∈Āh

hnDα(i)ū(xh
j )BilD

α(l)ū(xh
j ) = 0,

we have

lim
h→0

∑
j∈Āh

hnV T
j (A + h2B)Vj =

∫
Ω

V T (x)AV (x) dx. (4.52)

Since |B̄h − Ω| → 0 as h → 0, we have

lim
h→0

∑
|α|=k+2

‖Dαū‖2
Hq(B̄h) =

∑
|α|=k+2

‖Dαu‖2
Hq(Ω). (4.53)

Also limh→0 Qh(u) = |u|Hk+1(Ω). Thus, for any δ > 0, using (4.52) and
(4.53) in (4.51), we get

lim sup
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
≤ (1 + δ2)

∫
Ω V T (x)AV (x) dx

|u|2
Hk+1(Ω)

,
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and, since δ > 0 is arbitrary, we have

lim sup
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
≤
∫
Ω V T (x)AV (x) dx

|u|2
Hk+1(Ω)

. (4.54)

Following the argument leading to (4.54), but using Ah, Bh, and (4.46)
instead of Āh, B̄h, and (4.45), respectively, we can also show that∫

Ω V T (x)AV (x) dx

|u|2
Hk+1(Ω)

≤ lim inf
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
. (4.55)

Combining (4.54) and (4.55), we see that

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)

exists, and

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
=

∫
Ω V T (x)AV (x) dx

|u|2
Hk+1(Ω)

,

which is (4.49).
Since λ̄ is the largest eigenvalue of the matrix A, from the usual variational

characterization of eigenvalues we have

∫
Ω

V T (x)AV (x) dx ≤ λ̄

∫
Ω

Mk∑
i=1

|Dα(i)u(x)|2 dx = λ̄|u|2Hk+1(Ω).

Thus, from (4.49) we get

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
≤ λ̄, for any u ∈ Hk+2+q(Ω).

Hence

sup
u∈Hp+2+q(Ω)

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
≤ λ̄. (4.56)

Let v̄ = [v1, v2, . . . , vMk
]T be an eigenvector of A corresponding to λ̄. Then

it is easily seen that there is a u ∈ Pk+1 such that the vector V (x) = v̄. For
this particular u, we have∫

Ω V T (x)AV (x) dx

|u|2
Hk+1(Ω)

= λ̄.
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Hence, from (4.56) we conclude that

sup
u∈Hk+2+q(Ω)

lim
h→0

‖u − Ĩhu‖2
H1(Ω)

h2kQh(u)
= λ̄,

which is the desired result.

Remark 29. We know from (4.35) that the interpolant of a smooth func-
tion depends on its extension to R

n. But it is clear from the proof of Theo-
rem 4.4 that (4.47) is valid for any extension satisfying (3.50).

Remark 30. We note that the same result holds for the H1-seminorm of
the interpolation error, i.e., for q > n

2 when n ≥ 2, and q = 0 when n = 1,
we have

sup
u∈Hk+2+q(Ω)

lim
h→0

|u − Ĩhu|2H1(Ω)

h2k[|u|2
Hk+1(Ω)

+ h
∑

|α|=k+2 ‖Dαu‖2
Hq(Ω)]

= λ̄.

Remark 31. From (4.51) in the proof of Theorem 4.4, we can obtain an
interpolation error estimate,

‖u − Ĩhu‖H1(Ω) ≤ Chk‖u‖Hk+2+q(Ω),

where C may depend on Ω, but is independent of u and h. We note, however,
that this is not the optimal error estimate. For an outline of the proof, see
Babuška et al. (200x).

We have seen in Remark 31 that, if the particle shape functions are re-
producing of order k, then for a smooth function u,

‖u − Ĩhu‖H1(Ω) ≈ O(hk),

where Ĩhu is the interpolation of u as defined in (4.35). There are many
classes of shape functions that have these properties. We have seen in
Section 4.1 that translation-invariant RKP shape functions depend on the
weight function w(x), and different choices of w(x) will generate different
classes of such shape functions.

We will assess the approximability of a family {φh
j } of shape functions by

the size of λ̄, the largest eigenvalue of the matrix A defined in (4.42). We
note that λ̄ is computable, and depends only on the basic shape function
φ(x). We emphasize that λ̄ does not depend on u or on h. From (4.47), we
know that

‖u − Ĩhu‖H1(Ω)

hp
√

Qh(u)
�
√

λ̄, for small h.

Thus we see that λ̄ is a useful measure of the approximability of the family
{φh

j }, determined from the basic shape function φ(x).
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We will illustrate our selection scheme in one dimension, and will rank the
shape functions according to to their approximability. In one dimension,

λ̄ =
( |ξk+1|H1(0,1)

(k + 1)!

)2

.

In the rest of this paper we will suppress H1(0, 1) in |ξk+1|H1(0,1), and instead
write |ξk+1|1.

We considered four different classes of RKP shape functions, reproducing
of order 1, corresponding to four different weight functions w(x). These
weight functions were given by (4.2) with δ = 2, (4.3), and (4.4) with l = 2, 4.
We then computed |ξk+1|1 for each of these four classes of shape functions
for R = 1.7; we obtained

|ξk+1|1 =




0.237, for w(x) in (4.4), l = 2,

0.203, for w(x) in (4.2), δ = 2,

0.095, for w(x) in (4.3),
0.029, for w(x) in (4.4), l = 4.

We choose the RKP shape functions corresponding to w(x) given in (4.4)
with l = 4, since these shape functions yield the smallest value of |ξk+1|1.
We note that the value of |ξk+1|1 depends strongly on R, and the shape
function corresponding to w(x) given in (4.4) with l = 4 may not be our
choice for other values of R. We refer to Babuška et al. (200x) for further
discussion on this issue.

To validate our criterion for selection of the shape functions, we have
considered the function u(x) = x4 on the interval Ω = (0, 1) and computed
the error |u − Ĩhu|H1(Ω). Ĩhu is the interpolant of u with respect to the
four classes of RKP shape functions described in the last paragraph, with
h = 1/n, n = 40, 50, . . . , 100. We note that the definition of Ĩhu requires the
values of u(x) in a small neighbourhood of Ω, and we have extended u = x4

outside Ω by itself.
We summarize the results in Table 4.1. We note that columns 2–5 corre-

spond to different classes of RKP shape functions constructed using different
weight functions w(x); for example, the column headed ‘Cubic spline’ refers
to the cubic spline weight function given by (4.3). It is clear that the error
|u−Ĩhu|H1(Ω) can be ranked according to the size of |ξ2|1 for the four choices
of ω(x) considered here with R = 1.7; the error and |ξ2|1 are both minimal
when w(x) is the conical weight function with l = 4.

This selection scheme is based on (4.47), and we know from Remark 29
that (4.47) is valid for any extension. We refer to Babuška et al. (200x)
for an experimental illustration of this fact. We remark that this selection
scheme is also valid for the projection error, which will be indicated by our
results in the next section.
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Table 4.1. The H1-seminorm of the error, |u − Ĩhu|H1(Ω), where Ĩhu
is the interpolant of u(x) = x4 using RKP shape functions that are
reproducing of order 1, corresponding to different weight functions w(x).
The radius of support of ω(x) is R = 1.7.

|u − Ĩhu|H1(Ω)
n

Conical: l = 2 Gauss: δ = 2 Cubic spline Conical: l = 4

40 1.607e-2 1.376e-2 6.435e-3 2.283e-3
50 1.281e-2 1.096e-2 5.130e-3 1.730e-3
60 1.066e-2 9.112e-3 4.267e-3 1.396e-3
70 9.126e-3 7.800e-3 3.653e-3 1.172e-3
80 7.980e-3 6.819e-3 3.194e-3 1.012e-3
90 7.090e-3 6.058e-3 2.838e-3 8.908e-4
100 6.379e-3 5.449e-3 2.553e-3 7.962e-4

5. Superconvergence of the gradient of the solution in L2

Superconvergence is an important feature of finite element methods, which
allows an accurate approximation of the derivatives of the solution of the
underlying BVP. In this section, we will discuss the idea of superconvergence
when particle shape functions are used to approximate the solution of a
BVP. We will consider uniformly distributed particles and the associated
particle shape functions, which were developed in Sections 3.1 and 3.2. For
uniformly distributed particles, a careful analysis in one dimension can be
easily generalized to higher dimensions. Thus, in this section, we present
the results in one dimension, thereby avoiding some technical details arising
in the higher-dimensional analysis.

We will use the notation introduced in Section 3.1, but restricted to one
dimension, i.e., for h > 0, we consider xh

j = jh, j ∈ Z, and the corresponding
shape function φh

j defined in (3.1). We assume that the shape functions are
reproducing of order k. We use the following notation:

Ih
j = (xh

j , xh
j+1), Ah

j = {m ∈ Z : ηh
m ∩ Ih

j 	= ∅};
Ij = (j, j + 1), Aj ≡ A1

j (with h = 1).

We assume that
card(Aj) ≤ κ,

or equivalently,
card(Ah

j ) ≤ κ,
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where κ is independent of j and h. We assume that the basic shape function
φ(x) is such that, for any v(x) =

∑
i∈Z

ciφi(x) for x ∈ I0, there exist positive
constants C1, C2, independent of v, but possibly depending on κ, such that

C1

∑
j∈A0

c2
i ≤

∫
I0

v2 dx ≤ C2

∑
j∈A0

c2
i . (5.1)

This implies that the functions {φi(x)}i∈A0 are linearly independent in I0,
that is, ∑

j∈A0

cjφj(x) = 0, x ∈ I0 implies cj = 0, j ∈ A0.

Throughout this section, we use C, C1, C2 as generic constants, which will
have different values in different places.

Consider Ω = (−c, d) ⊂ R. Let u0 ∈ H1(Ω) be the solution of the
Neumann problem

B(u0, v) = F(v), for all v ∈ H1(Ω), (5.2)

where

B(u, v) =
∫

Ω
(u′v′ + uv) dx and F(v) =

∫
Ω

fv dx

as in (2.4) and (2.5). We will often use the notation BF (u, v) to denote the
above bilinear form, where the Ω is replaced by another domain F .

Let uh ∈ V k,q
Ω,h be the solution of

B(uh, v) = F(v), for all v ∈ V k,q
Ω,h, (5.3)

where V k,q
Ω,h was defined in (3.54). It is clear from (5.2) and (5.3) that

B(u0 − uh, v) = 0, for all v ∈ V k,q
Ω,h, (5.4)

and we easily have
‖uh‖H1(Ω) ≤ ‖u0‖H1(Ω). (5.5)

Recall that the functions in V k,q
Ω,h are restrictions of the functions in Sh ≡ V k,q

h

on Ω (cf. (3.2) and (3.54)). Thus (5.4) is true when V k,q
Ω,h is replaced by Sh.

We assume that, for any ρ > 0,

‖u0 − uh‖L2(Bρ(0)) ≤ Chk+1‖u0‖Hk+1(Ω)ρ
1
2 , (5.6)

and there are positive constants C1, C2, independent of u, h, and ρ, such
that

C1h
kρ

1
2 ≤

‖u′
0 − u′

h‖L2(Bρ(0))

‖u0‖Hk+1(Ω)

≤ C2h
kρ

1
2 , (5.7)
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where Bρ(0) = {x : |x| < ρ} and Bρ(0) ⊂ Ω. We will write Bρ ≡ Bρ(0)
throughout this section.

The main goal of this section is to investigate the error u′(x)− u′
h(x) in a

neighbourhood of x = 0, i.e., for x ∈ BH ⊂⊂ Ω and H = hγ , γ < 1, where
γ will be chosen later. We will prove the following result.

Theorem 5.1. Suppose u0 and uh satisfy (5.6) and (5.7), and let eh =
u0 − uh. Moreover, assume that u0 ∈ W k+2

∞ (B2H). Then, for sufficiently
small h, there exists ε∗ > 0 such that

‖e′h − T (u0)ξh
k+1

′‖L2(BH)

‖e′h‖L2(BH)
≤ Chε∗ ,

where

T (u0) =
u

(k+1)
0 (0)
(k + 1)!

and ξh
k+1(x) = hk+1ξk+1

(
x

h

)
;

ξk+1 is defined in (4.37).

Remark 32. Theorem 5.1 is a superconvergence result. It shows that

‖e′h − T (u0)ξh
k+1

′‖L2(BH) � ‖e′h‖L2(BH).

This allows us, for example, to analyse the effectiveness of an error estimator,
as was done in Babuška, Strouboulis, Upadhyay and Gangaraj (1996) and
Babuška and Strouboulis (2001).

Since the all the results in this paper have been presented in terms of
L2-based norms (i.e., in terms of the usual Sobolev norms), we also present
this result in terms of L2-based norms. Superconvergence in L∞ will be
addressed in a forthcoming paper. Assuming superconvergence in L∞, the
superconvergence points and superconvergence recoveries in the case of par-
ticle shape functions can be obtained as in Babuška and Strouboulis (2001).
At the end of this section, we will see an example where the superconver-
gence points are distributed in a different way to that of the classical FEM.

Remark 33. The essential aspects of superconvergence analysis in the
classical FEM are interior estimates, developed in Nitsche and Schatz (1974),
Schatz and Wahlbin (1995) and Wahlbin (1995). This analysis strongly uti-
lizes the polynomial character of the shape functions. Here, in the case of
particle shape functions, we had to develop another approach to the analysis
of superconvergence, which is based on weighted Sobolev spaces. The main
idea of the proof of our superconvergence result is to show that locally the
approximation error is asymptotically the same as the error in the inter-
polation of a polynomial of degree k + 1 by particle shape functions. The
analysis is technical; we present the main idea of this analysis in this section.
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Remark 34. Assumptions (5.6) and (5.7) are directly related to the con-
trol of pollution, as in the FEM. The assumption u0 ∈ W k+1

∞ (Bρ) is analo-
gous to the assumption in the FEM (see Babuška et al. (1996) and Babuška
and Strouboulis (2001)).

To prove Theorem 5.1, we will first develop certain ideas and establish
several technical results. To that end, for given parameters H = hγ , with
γ < 1, and α ≥ 1, we define the function g(x) by

g(x) =




1, −H ≤ x ≤ H,

e−α(x−H), x > H,

eα(H+x), x < −H,

(5.8)

where α is such that αh < 1, and will be chosen later. We note that a proper
choice of γ and α is crucial for the analysis presented in this section. Often,
we will use g ≡ g(x), gi ≡ g(xh

i ) and gi+ 1
2
≡ g(xh

i + h/2).

Generalized interpolant and certain norm estimates
We first introduce the idea of a generalized interpolant of a function u, which
is different to the Ĩhu defined in Section 4.2. Let Ĩ0 ≡ I−1∪I0∪{0} = (−1, 1)
and Ã0 ≡ A−1 ∪ A0. Then, from (5.1), it is clear that there are positive
constants C1, C2, independent of v =

∑
i∈Z

ciφi(x), but possibly depending
on κ, such that

C1

∑
j∈Ã0

c2
i ≤

∫
Ĩ0

v2 dx ≤ C2

∑
j∈Ã0

c2
i , (5.9)

which implies that {φi(x)}i∈Ã0
are also linearly independent in Ĩ0. We define

ψ0(x) =
∑

i∈Ã0
aiφi(x) with supp ψ0 = Ĩ0 (closure of Ĩ0), such that∫
Ĩ0

ψ0(x)φ0(x) dx = 1,∫
Ĩ0

ψ0(x)φj(x) dx = 0, for all j ∈ Ã0, j 	= 0. (5.10)

Using (5.9), we can show that

‖ψ0‖L2(Ĩ0) ≤ C. (5.11)

We also note that, since {φi(x)}i∈Ã0
form a partition unity on Ĩ0, from (5.10)

we have∫
Ĩ0

ψ0(x) dx =
∫

Ĩ0

ψ0(x)
∑
i∈Ã0

φi(x) dx =
∫

Ĩ0

ψ0(x)φ0(x) dx = 1. (5.12)

Let ψh
i (x) = ψ0(x

h−i). Then supp ψh
i = Ĩh

i , where Ĩh
i = (xh

i−1, x
h
i+1). Note
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that ∪i∈Z Ĩh
i = R. Now, for a given v ∈ L2(R), we define the generalized

interpolant of v as

Ĩ∗
hv(x) =

∑
i∈Z

Ψh
i (v)φh

i (x), (5.13)

where

Ψh
i (v) =

1
h

∫
Ĩh
i

ψh
i (x)v(x) dx. (5.14)

We note that Ĩ∗
hv(x) depends on the v(y) for y ∈ ∪i∈Ah(x)Ĩ

h
i , where Ah(x) =

{l ∈ Z : x ∈ ηh
l }. We also define

Ãh
i = {m ∈ Z : ηh

m ∩ Ĩh
i 	= ∅}.

Lemma 5.2. Suppose v(x) =
∑

i∈Z
ch
i φh

i (x). Then

ch
i = Ψh

i (v), and (5.15)

Ĩ∗
hv(x) = v(x). (5.16)

Proof. From (5.10) and the definition of Ψh
i (v) in (5.14), i ∈ Z, we have

Ψh
i (v) =

1
h

∫
Ĩh
i

ψh
i (x)v(x) dx

=
1
h

∫
Ĩh
i

ψ0

(
x

h
− i

) ∑
j∈Ãh

i

ch
j φ

(
x

h
− j

)
dx

=
∫

Ĩ0

ψ0(y)
∑
j∈Ãh

i

ch
j φj−i(y) dy

= ch
i ,

which is (5.15). Now using (5.15) in (5.13), we get (5.16).

Remark 35. We note that if v is a local linear combination of the {φh
i },

i.e., in a bounded open interval, then Ĩ∗
hv = v only in the interior of that

open interval. More precisely, Ĩ∗
hv = v in an interval I if v is a linear

combination of the {φi} in ∪x∈I ∪i∈Ah(x) Ĩh
i .

We will use the following result later.

Lemma 5.3. Let Ω be a bounded interval, and suppose u ∈ L2(Ω). Then

‖Ĩ∗
hEu‖H1(R) ≤ Ch−1‖u‖L2(Ω),

where E is the extension operator satisfying (3.50).
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Proof. We first note that the extension Eu of u satisfies ‖Eu‖L2(R) ≤
C‖u‖L2(Ω). Now, from (5.13) and (4.32),

‖Ĩ∗
hEu‖2

H1(Ĩh
i )

≤ C
∑
j∈Ãh

i

|Ψh
j (Eu)|2 ‖φh

j ‖2
H1(η̊j)

≤ Ch−1
∑
j∈Ãh

i

|Ψh
j (Eu)|2, (5.17)

where C depends on κ; and using the Schwartz inequality on (5.14) with
v = Eu, and a scaling argument, we get

|Ψh
j (Eu)|2 ≤ 1

h2

(∫
Ĩh
j

ψh
j (x)Eu(x) dx

)2

≤ 1
h2

[∫
Ĩh
j

(ψh
j )2 dx

][∫
Ĩh
j

(Eu)2 dx

]

≤ 1
h
‖ψ0‖2

L2(Ĩ0)

[∫
Ĩh
j

(Eu)2 dx

]
. (5.18)

Thus, from (5.17), (5.18), and the fact that ‖Eu‖L2(R) ≤ C‖u‖L2(Ω), we
have

‖Ĩ∗
hEu‖2

H1(R) ≤ Ch−2‖u‖2
L2(Ω),

which is the desired result.

Remark 36. We can also show that

‖Ĩ∗
hEu‖L2(R) ≤ C‖u‖L2(Ω),

using the same arguments as in the proof of Lemma 5.3.

Consider the function v(x) =
∑

i∈Ah
j
ch
i φh

i (x) on Ih
j . Then, using scaling,

translation, and (5.1), we have

C1h
∑
j∈Ah

j

(ch
i )2 ≤

∫
Ih
j

v2 dx ≤ C2h
∑
j∈Ah

j

(ch
i )2, (5.19)

where C1, C2 are positive constants, independent of h and j, but possibly
depending on κ. Using (5.19), we can show that if v(x) =

∑
i∈Z

ch
i φh

i (x) = 0
in L2, then ch

i = 0, for all i ∈ Z, i.e., {φh
i } are linearly independent.

We will now prove certain lower bounds for
∫
Ih
j

gv2 dx and
∫
Ih
j

gv′2 dx,

where g(x) has been defined before. We first prove the following inequality.
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Lemma 5.4. Let i0, i1 be integers such that i0 < i1, and suppose {ci}i1
i=i0

are real numbers. Then there exists a positive constant C, depending only
on i1 − i0, such that, for any k, i0 ≤ k ≤ i1, we have

i1∑
i=i0

gi+ 1
2
(ci − ck)2 ≤ C

i1−1∑
i=i0

gi+ 1
2
(ci+1 − ci)2. (5.20)

Proof. Suppose the integers i0, i1 are such that H < i0h < i1h, where
H = hγ , γ < 1. Then

i1∑
i=i0

gi+ 1
2
(ci − ck)2 =

k−1∑
i=i0

gi+ 1
2
(ci − ck)2 +

i1∑
i=k+1

gi+ 1
2
(ci − ck)2. (5.21)

We first note that
i1∑

i=k+1

gi+ 1
2
(ci − ck)2

≤ C

i1∑
i=k+1

i−1∑
j=k

gi+ 1
2
(cj+1 − cj)2

= C

i1∑
i=k+1

i−1∑
j=k

(
1 +

gi+ 1
2
− gj+ 1

2

gj+ 1
2

)
gj+ 1

2
(cj+1 − cj)2. (5.22)

But from the definition of g(x) in (5.8), we have(
1 +

gi+ 1
2
− gj+ 1

2

gj+ 1
2

)
≤ e−α(i−j)h ≤ eα(i1−i0)h ≤ C, (5.23)

and using this in (5.22), we get

i1∑
i=k+1

gi+ 1
2
(ci − ck)2 ≤ C

i1∑
i=k+1

i−1∑
j=k

gj+ 1
2
(cj+1 − cj)2

≤ C

i1−1∑
j=k

gj+ 1
2
(cj+1 − cj)2, (5.24)

where C depends on (i1 − i0).
Using similar arguments we can show that

k−1∑
i=i0

gi+ 1
2
(ck − ci)2 ≤ C(k − 1 − i0)

k−1∑
j=i0

gj+ 1
2
(cj+1 − cj)2, (5.25)

where C depends on (i1 − i0). Therefore, combining (5.21), (5.24), and
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(5.25), we have

i1∑
i=i0

gi+ 1
2
(ci − ck)2 ≤ C

i1∑
i=i0

gj+ 1
2
(cj+1 − cj)2, (5.26)

where C depends on (ii − i0). Using similar arguments, we can prove (5.26)
for all integers i0, i1 such that i0 < i1.

Lemma 5.5. Suppose v(x) =
∑

i∈Z
ch
i φh

i (x). Then:

(a) there are positive constants C1, C2, independent of v, h and j, but
possibly depending on κ, such that

C1h
∑
i∈Ah

j

gi(ch
i )2 ≤

∫
Ih
j

gv2 dx ≤ C2h
∑
i∈Ah

j

gi(ch
i )2; (5.27)

(b) there is a positive constant C, independent of v and h, such that

1
h

∑
i∈Zn

gi+ 1
2
(ch

i+1 − ch
i )2 ≤ C

∫
R

gv′2 dx. (5.28)

Proof. (a) Consider j ∈ Z and the corresponding Ah
j such that, for i ∈ Ah

j ,
H < xh

i . Let gM = maxi∈Ah
j
g(xh

i ) and gm = mini∈Ah
j
g(xh

i ). Then, it is easy
to check that gM

gm
≤ C, where C depends κ. Now, using (5.19), we have

h
∑
i∈Ah

j

gi(ch
i )2 ≤ gMh

∑
i∈Ah

j

(ch
i )2

≤ gM

C1gm

∫
Ih
j

gv2 dx

≤ C

∫
Ih
j

gv2 dx. (5.29)

Using a similar argument, we get∫
Ih
j

gv2 dx ≤ C
∑
i∈Ah

j

gi(ch
i )2.

Combining the above with (5.29) gives the required result. Using similar
arguments, we can prove (5.27) for any j ∈ Z.

(b) Let u =
∑

i∈Z
ciφi(x). Then, from (5.14) and (5.15) with h = 1, we

have

ci = Ψ1
i (u) =

∫ i+1

i−1
ψ1

i (x)u(x) dx, (5.30)
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and therefore

ci+1 − ci =
∫ i+2

i
ψ1

i+1(x)u(x) dx −
∫ i+1

i−1
ψ1

i (x)u(x) dx

=
∫ i+2

i−1
(ψ1

i+1(x) − ψ1
i (x))u(x) dx. (5.31)

Let F (x) =
∫ x
i−1[ψ

1
i+1(t)−ψ1

i (t)] dt. Using translation and (5.12), it is easily
seen that ∫ i+1

i−1
ψ1

i (t) dt =
∫ i+2

i
ψ1

i+1(t) dt = 1,

and therefore F (i − 1) = F (i + 2) = 0. Also, using the Schwartz inequality
and (5.11), we can show that∫ i+2

i−1
F 2 dx ≤ C.

Now, using the above bound, integrating (5.31) by parts, and using the
Schwartz inequality, we get

(ci+1 − ci)2 =
(∫ i+2

i−1
Fu′ dx

)2

≤ C

∫ i+2

i−1
u′2 dx. (5.32)

Let v =
∑

i∈Z
ch
i φh

i (x). Then, by a standard scaling argument, we have∫ xh
i+2

xh
i−1

(v′(x))2 dx =
1
h

∫ i+1

i−1
(u′(y))2 dy, (5.33)

where u(y) =
∑

i∈Z
ch
i φi(y). Therefore, from (5.32) and (5.33), we have

1
h

(ch
i+1 − ch

i )2 ≤ C

∫ xh
i+2

xh
i−1

v′2 dx. (5.34)

From the definition of g(x), we can show that(
1 +

gi+1/2 − g(x)
g(x)

)
≤ C, for x ∈ (xh

i−1, x
h
i+2).

Therefore,

1
h

gi+ 1
2
(ch

i+1 − ch
i )2 ≤ C

∫ xh
i+2

xh
i−1

gv′2
(

1 +
gi+ 1

2
− g

g

)
dx

≤ C

∫ xh
i+2

xh
i−1

gv′2 dx,
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and hence

1
h

∑
i∈Z

gi+ 1
2
(ch

i+1 − ch
i )2 ≤ C

∑
i∈Z

∫ xh
i+2

xh
i−1

gv′2 dx ≤ C

∫
R

gv′2 dx,

which is the required result.

Remark 37. We note that it is possible to show that∫
R

gv′2 dx ≤ C
1
h

∑
i∈Zn

gi+ 1
2
(ch

i+1 − ch
i )2,

and together with (5.28) we see that 1
h

∑
i∈Zn gi+ 1

2
(ch

i+1 − ch
i )2 is equivalent

to |v|2H1(R). The proof of this fact is easier than the proof of (5.28), and we
do not provide the proof here.

A perturbed bilinear form BΘ(u, v) and related results
For a given Θ ≥ 1, we now consider the bilinear form

BR

Θ(u, v) ≡ BR(u, v) + ΘDR(u, v),

where

BR(u, v) =
∫

R

(u′v′ + uv) dx and DR(u, v) =
∫

R

uv dx.

We will write BΘ(u, v) ≡ BR

Θ(u, v), but will use BF
Θ(u, v) when the domain

of integration is F instead of R. Also, we will use DF (u, v), where R is
replaced by a domain F in the definition of DR(u, v).

Let H1
g,Θ and H1

g−1,Θ be Hilbert spaces defined as

H1
g,Θ =

{
u : ‖u‖2

1,g,Θ ≡
∫

R

gu′2 dx + (1 + Θ)
∫

R

gu2 dx < ∞
}

,

H1
g−1,Θ =

{
u : ‖u‖2

1,g−1,Θ ≡
∫

R

g−1u′2 dx + (1 + Θ)
∫

R

g−1u2 dx < ∞
}

.

We will choose Θ later. The choice of Θ, along with the choices of γ and
α, mentioned before, is important for the main result of this section. We
assume that α2/Θ̄ < 1 where Θ̄ = 1 + Θ.

We will often suppress Θ in ‖u‖1,g,Θ and ‖u‖1,g−1,Θ and instead write
‖u‖1,g and ‖u‖1,g−1 respectively. We will also use the fact that |g′/g| ≤ α,
which is obvious from the definition of g(x).

Remark 38. The space H1
g,Θ is directed towards obtaining interior esti-

mates of e′h, i.e., e′h is locally characterized through the use of the space Hg,Θ.
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We now consider BΘ(·, ·) : H1
g,Θ × H1

g−1,Θ → R.

Lemma 5.6. The bilinear form BΘ(·, ·) is bounded on H1
g,Θ × H1

g−1,Θ,
that is,

BΘ(u, v) ≤ C‖u‖1,g‖v‖1,g−1 , for all u ∈ H1
g,Θ, v ∈ H1

g−1,Θ.

Proof. Let u ∈ H1
g,Θ and v ∈ H1

g−1,Θ. Then

BΘ(u, v)

=
∫

R

[u′v′ + (1 + Θ)uv] dx

=
∫

R

[g1/2u′g−1/2v′ + (1 + Θ)1/2g1/2u(1 + Θ)1/2g−1/2v] dx

≤ C

[∫
R

(gu′2 + (1 + Θ)gu2) dx

]1/2[∫
R

(g−1v′2 + (1 + Θ)g−1v2) dx

]1/2

= C‖u‖1,g‖v‖1,g−1 .

Lemma 5.7. Suppose α2/Θ̄ < 1. Then there is a constant C > 0, which
depends on α2/Θ̄, such that

inf
u∈H1

g,Θ

sup
v∈H1

g−1,Θ

BΘ(u, v)
‖u‖1,g‖v‖1,g−1

≥ C > 0.

Proof. Suppose u ∈ H1
g,Θ. We consider v = gu. Now,

BΘ(u, v) =
∫

R

[u′v′ + Θ̄uv] dx

=
∫

R

[u′(gu′ + g′u) + Θ̄gu2] dx

=
∫

R

[gu′2 + Θ̄gu2] dx +
∫

R

uu′g′ dx. (5.35)

Now, for ε > 0,∣∣∣∣
∫

R

uu′g′ dx

∣∣∣∣ =
∣∣∣∣
∫

R

guu′
(

g′

g

)
dx

∣∣∣∣
≤ α

∫
R

|g1/2ug1/2u′|dx

≤ α

[
ε

∫
R

gu′2 dx +
1
ε

∫
R

gu2 dx

]
,
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and therefore, from (5.35), we get

BΘ(u, v) ≥
∫

R

(gu′2 + Θ̄gu2) dx − α

[
ε

∫
R

gu′2 dx +
1
ε

∫
R

gu2 dx

]

= (1 − αε)
∫

R

gu′2 dx +
(

1 − α

εΘ̄

)∫
R

Θ̄gu2 dx. (5.36)

We choose ε such that αε < 1 and α/εΘ̄ < 1, and therefore, from (5.36), we
have

BΘ(u, v) ≥ C1‖u‖2
1,g, (5.37)

where

C1 = min
[
(1 − αε),

(
1 − α

εΘ̄

)]
> 0. (5.38)

We next show that ‖v‖1,g−1 ≤ C2‖u‖1,g. First note that∫
R

g−1v′2 dx =
∫

R

g−1(gu′ + g′u)2 dx

=
∫

R

gu′2 dx +
∫

R

g−1g′2u2 dx + 2
∫

R

g′uu′ dx. (5.39)

Now, ∫
R

g−1g′2u2 dx =
∫

R

g

(
g′

g

)2

u2 dx ≤ α2

∫
R

gu2 dx, (5.40)

and

2
∫

R

g′uu′ dx = 2
∫

R

g

(
g′

g

)
uu′ dx ≤ 2

∫
R

|αg1/2ug1/2u′|dx

≤
∫

R

(gu′2 + α2gu2) dx. (5.41)

Therefore, using (5.40) and (5.41) in (5.39), we get∫
R

g−1v′2 dx ≤ 2
∫

R

gu′2 dx +
2α2

Θ̄

∫
R

Θ̄gu2 dx. (5.42)

Thus, combining

Θ̄
∫

R

g−1v2 dx = Θ̄
∫

R

g−1g2u2 dx = Θ̄
∫

R

gu2 dx

with (5.42), we get

‖v‖2
1,g−1 ≤ 2

∫
R

gu′2 dx +
(

1 +
2α2

Θ̄

)∫
R

Θ̄gu2 dx. (5.43)

Since α2/Θ̄ < 1, from (5.43) we have

‖v‖2
1,g−1 ≤ 3‖u‖2

1,g. (5.44)
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Thus v ∈ H1
g−1,Θ, and combining (5.37) and (5.44), we get

inf
u∈H1

g,Θ

sup
v∈H1

g−1,Θ

BΘ(u, v)
‖u‖1,g‖v‖1,g−1

≥ C > 0,

where

C =
min[(1 − αε), (1 − α

εΘ̄
)]

√
3

.

We now prove the inf-sup condition on Sh × Sh. In the proof, we will
use the function di(x), x ∈ Ih

k and i ∈ Ah
k , to denote the following similar

functions:
gi − g(x)√

gi g(x)
,

gi+ 1
2
− g(x)√

gi+ 1
2
g(x)

,
gi+ 1

2
− glk+ 1

2√
glk+ 1

2
g(x)

,

where lk ∈ Ah
k . It is easily seen from the definition of g(x) that

|di(x)| ≤ Cαh. (5.45)

Lemma 5.8. Suppose α2/Θ̄ < C1 and αh < C2, where C1, C2 are suffi-
ciently small. Then there is a constant C > 0, independent of u, v, and h,
but possibly depending on κ and α2/Θ̄, such that, for sufficiently small h,

inf
u∈Sh

sup
v∈Sh

BΘ(u, v)
‖u‖1,g‖v‖1,g−1

≥ C > 0. (5.46)

Proof. Let u =
∑

i∈Z
ch
i φh

i in Sh such that ‖u‖1,g ≤ ∞. Then, for x ∈ Ih
k ,

we have u =
∑

i∈Ah
k
ch
i φh

i . Since
∑

i∈Ah
k
φh

i
′(x) = 0 for x ∈ Ih

k , we have

u′(x) =
∑
i∈Ah

k

ch
i φh

i
′
(x) =

∑
i∈Ah

k

(ch
i − ch

lk
)φh

i
′
(x), x ∈ Ih

k ,

where lk ∈ Ah
k is a fixed integer for given k.

We now choose v =
∑

i∈Z
ch
i gi+ 1

2
φh

i in Sh and, as before, for x ∈ Ih
k ,

v′(x) =
∑
i∈Ah

k

ch
i gi+ 1

2
φh

i
′
(x)

=
∑
i∈Ah

k

(ch
i gi+ 1

2
− ch

lk
glk+ 1

2
)φh

i
′
(x)

=
∑
i∈Ah

k

(ch
i − ch

lk
)gi+ 1

2
φh

i
′
(x) + ch

lk

∑
i∈Ah

k

(gi+ 1
2
− glk+ 1

2
)φh

i
′
(x).

Now, ∫
R

u′v′ dx =
∫

R

gu′2 dx +
∫

R

u′(v′ − gu′) dx. (5.47)
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For ε > 0, we have∣∣∣∣
∫

R

u′(v′ − gu′) dx

∣∣∣∣ =
∣∣∣∣
∫

R

g1/2u′ (v
′ − gu′)
g1/2

dx

∣∣∣∣
≤ ε

∫
R

gu′2 dx +
1
ε

∫
R

(v′ − gu′)2

g
dx. (5.48)

Now, from the definition of v′ and u′,
∫

Ih
k

1
g
(v′ − gu′)2 dx =

∫
Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2
− g

g1/2
φh

i
′

+ ch
lk

∑
i∈Ah

k

gi+ 1
2
− glk+ 1

2

g1/2
φh

i
′




2

dx

≤ C

∫
Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2
− g

g1/2
φh

i
′




2

dx

+ C

∫
Ih
k

(ch
lk

)2


∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

g1/2
φh

i
′




2

dx. (5.49)

The first term of the right-hand side of the above inequality, employing
(5.45) and (5.20), gives

∫
Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2
− g

g1/2
φh

i
′




2

dx

=
∫

Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)(gi+ 1

2
)1/2

gi+ 1
2
− g

(gi+ 1
2
)1/2g1/2

φh
i
′




2

dx

≤ C

∫
Ih
k

∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2
d2

i (φ
h
i
′
)2 dx

≤ Cα2h2
∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2

∫
Ih
k

(φh
i
′
)2 dx

≤ Cα2h2 1
h

∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2

≤ Cα2h2 1
h

∑
i,(i+1)∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2
, (5.50)
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where C is independent of α, h, but depends on κ.
The second term of the right-hand side of (5.49), employing (5.45), gives

(ch
lk

)2
∫

Ih
k


∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

g1/2
φh

i
′




2

dx

= (ch
lk

)2glk+ 1
2

∫
Ih
k


∑

i∈Ah
k

gi+ 1
2
− glk+ 1

2

(glk+ 1
2
)1/2g1/2

φh
i
′




2

dx

≤ C(ch
lk

)2glk+ 1
2

∑
i∈Ah

k

∫
Ih
k

d2
i (φ

h
i
′
)2 dx

≤ Cα2h(ch
lk

)2glk , (5.51)

where C depends on κ, but is independent of α, h. Therefore, from (5.49),
(5.50), and (5.51) we have

∫
Ih
k

1
g
(v′ − gu′)2 dx ≤ Cα2h2 1

h

∑
i,(i+1)∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2

+ Cα2h(ch
lk

)2glk .

Now summing the above inequality over k ∈ Z, and using (5.27) and (5.28),
we get

∫
R

1
g
(v′ − gu′)2 dx =

∑
k∈Z

∫
Ih
k

1
g
(v′ − gu′)2 dx

≤ Cα2h2 1
h

∑
k∈Z

∑
i,(i+1)∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2

+ Cα2h
∑
k∈Z

∑
i∈Ah

k

(ch
i )2gi

≤ Cα2h2 1
h

∑
i∈Z

(ch
i+1 − ch

i )2gi+ 1
2

+ Cα2
∑
k∈Z

∫
Ih
k

gu2 dx

≤ Cα2h2

∫
R

gu′2 dx + Cα2

∫
R

gu2 dx. (5.52)
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Then, from (5.48) and (5.52) we have∫
R

u′(v′ − gu′) dx ≤ ε

∫
R

gu′2 dx

+
1
ε

[
Cα2h2

∫
R

gu′2 dx + Cα2

∫
R

gu2 dx

]

=
(

ε +
Cα2h2

ε

)∫
R

gu′2 dx +
Cα2

εΘ̄

∫
R

Θ̄gu2 dx. (5.53)

We next consider

Θ̄
∫

R

uv dx = Θ̄
∫

R

gu2 dx + Θ̄
∫

R

u(v − gu) dx. (5.54)

For ε1 > 0, we have∣∣∣∣
∫

R

u(v − gu) dx

∣∣∣∣ =
∣∣∣∣
∫

R

g1/2u
v − gu

g1/2
dx

∣∣∣∣
≤ ε1

∫
R

gu2 dx +
1
ε1

∫
R

(v − gu)2

g
dx. (5.55)

Now,

∫
Ih
k

(v − gu)2

g
dx =

∫
Ih
k

1
g


∑

i∈Ah
k

ch
i (gi − g)φh

i




2

dx

=
∫

Ih
k


∑

i∈Ah
k

ch
i gi

1/2 (gi − g)
gi

1/2g1/2
φh

i




2

dx

≤ C

∫
Ih
k

∑
i∈Ah

k

(ch
i )2gid

2
i φ

h
i
2
dx

≤ Cα2h2h
∑
i∈Ah

k

(ch
i )2gi.

Therefore, using (5.27), we get∫
R

(v − gu)2

g
dx =

∑
k∈Z

∫
Ih
k

(v − gu)2

g
dx

≤
∑
k∈Z

Cα2h2h
∑
i∈Ah

k

(ch
i )2gi

≤ Cα2h2

∫
R

gu2 dx. (5.56)
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Thus, from (5.55), (5.56), we have

Θ̄
∣∣∣∣
∫

R

u(v − gu) dx

∣∣∣∣ ≤
(

ε1 +
Cα2h2

ε1

)∫
R

Θ̄gu2 dx, (5.57)

and combining (5.47), (5.53), (5.54), and (5.57), we get

|BΘ(u, v)| ≥
∫

R

gu′2 dx + Θ̄
∫

R

gu2 dx

−
∣∣∣∣
∫

R

u′(v′ − gu′) dx

∣∣∣∣− Θ̄
∣∣∣∣
∫

R

u(v − gu) dx

∣∣∣∣
≥
(

1 − ε − Cα2h2

ε

)∫
R

gu′2 dx

+
(

1 − ε1 −
Cα2h2

ε1
− Cα2

εΘ̄

)∫
R

Θ̄gu2 dx.

Now we can choose ε and ε1, for sufficiently small h, such that

|BΘ(u, v)| ≥ C1‖u‖2
1,g, (5.58)

where C1 > 0, since α2/Θ̄ � 1, αh � 1 by assumption.
We now show that ‖v‖1,g−1 ≤ C‖u‖1,g. From the definition of v′, we have

∫
Ih
k

g−1v′2 dx =
∫

Ih
k

g−1


∑

i∈Ah
k

(ch
i − ch

lk
)gi+ 1

2
φh

i
′

+ clk

∑
i∈Ah

k

(gi+ 1
2
− glk+ 1

2
)φh

i
′




2

dx

≤
∫

Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2

g1/2
φh

i
′




2

dx

+ c2
lk

∫
Ih
k


∑

i∈Ah
k

(gi+ 1
2
− glk+ 1

2
)

g1/2
φh

i
′




2

dx. (5.59)

Now,

∫
Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)
gi+ 1

2

g1/2
φh

i
′




2

dx

=
∫

Ih
k


∑

i∈Ah
k

(ch
i − ch

lk
)g1/2φh

i
′
+
∑
i∈Ah

k

(ch
i − ch

lk
)g1/2

i+ 1
2


gi+ 1

2
− g

g
1/2

i+ 1
2

g1/2


φh

i
′




2

dx
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≤ C

∫
Ih
k

g


∑

i∈Ah
k

(ch
i − ch

lk
)φh

i
′




2

dx + C

∫
Ih
k

∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2
d2

i (φ
h
i
′
)2 dx

≤ C

∫
Ih
k

gu′2 dx + C

∫
Ih
k

∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2
d2

i (φ
h
i
′
)2 dx. (5.60)

Also using (5.45) and (5.20), we have∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2

∫
Ih
k

d2
i (φ

h
i
′
)2 dx ≤ Cα2h2 1

h

∑
i∈Ah

k

(ch
i − ch

lk
)2gi+ 1

2
(5.61)

≤ Cα2h2 1
h

∑
i,i+1∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2
.

Therefore, using (5.60), (5.61) and (5.51) in (5.59), we get∫
Ih
k

g−1v′2 dx

≤ C

∫
Ih
k

gu′2 dx + Cα2h(ch
lk

)2glk + Cα2h2 1
h

∑
i,i+1∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2

≤ C

∫
Ih
k

gu′2 dx + Cα2h
∑
i∈Ah

k

(ch
i )2gi + Cα2h2 1

h

∑
i,i+1∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2

≤ C

∫
Ih
k

gu′2 dx + Cα2

∫
Ih
k

gu2 dx + Cα2h2 1
h

∑
i,i+1∈Ah

k

(ch
i+1 − ch

i )2gi+ 1
2
.

Now, summing the above inequality for all k and using (5.20), we get∫
R

g−1v′2 dx ≤ C(1 + α2h2)
∫

R

gu′2 dx + Cα2

∫
R

gu2 dx. (5.62)

Again,∫
R

g−1v2 dx =
∫

R

g−1

(∑
i∈Z

ch
i giφ

h
i

)2

dx =
∫

R

(∑
i∈Z

ch
i

gi

g1/2
φh

i

)2

dx. (5.63)

Now using (5.45), we get

∫
Ih
k


∑

i∈Ah
k

ch
i

gi

g1/2
φh

i




2

dx

=
∫

Ih
k


∑

i∈Ah
k

ch
i g1/2φh

i +
∑
i∈Ah

k

ch
i

gi − g

g1/2
φh

i




2

dx
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≤ C

∫
Ih
k


∑

i∈Ah
k

ch
i g1/2φh

i




2

dx + C

∫
Ih
k

∑
i∈Ah

k

(ch
i )2gi

(
gi − g

g1/2g
1/2
i

)2

φh
i
2
dx

≤ C

∫
Ih
k

gu2 dx + C
∑
i∈Ah

k

(ch
i )2gi

∫
Ih
k

d2
i φ

h
i
2
dx

≤ C

∫
Ih
k

gu2 dx + Cα2h2h
∑
i∈Ah

k

(ch
i )2gi

≤ C

∫
Ih
k

gu2 dx + Cα2h2C

∫
Ih
k

gu2 dx

≤ C(1 + α2h2)
∫

Ih
k

gu2 dx,

and therefore, from (5.63) and the above inequality,

∫
R

g−1v2 dx ≤ C
∑
k∈Z

∫
Ih
k


∑

i∈Ah
k

ch
i

gi

g1/2
φh

i




2

dx

≤ C(1 + α2h2)
∑
k∈Z

∫
Ih
k

gu2 dx

= C(1 + α2h2)
∫

R

gu2 dx.

Thus, combining (5.62) and the above inequality, we have

‖v‖2
1,g−1 =

∫
R

g−1v′2 dx + Θ̄
∫

R

g−1v2 dx

≤ C(1 + α2h2)
∫

R

gu′2 dx + Cα2

∫
R

gu2 dx

+ C(1 + α2h2)
∫

R

Θ̄gu2 dx

≤ C(1 + α2h2)
∫

R

gu′2 dx

+
[
Cα2

Θ̄
+ C(1 + α2h2)

] ∫
R

Θ̄gu2 dx

≤ C

(
1 + α2h2 +

α2

Θ̄

)
‖u‖2

1,g ≤ C2‖u‖2
1,g. (5.64)

Finally, combining (5.58) and (5.64) we get the desired result.
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Projection with respect to BΘ(u, v)
Suppose u ∈ H1

g,Θ and let PΘu be the projection of u onto Sh defined by

BΘ(PΘu, v) = BΘ(u, v), for all v ∈ Sh.

The projection PΘu exists (see Babuška and Aziz (1972)), and it is clear
from Lemmas 5.8 and 5.6 that

‖PΘu‖1,g ≤ C sup
v∈Sh

BΘ(u, v)
‖v‖1,g−1

≤ C‖u‖1,g. (5.65)

We first note that, for fixed h, α, and Θ, the polynomials belong to the
space H1

g,Θ. Moreover, for fixed h, α, and Θ, we can also show, using (5.27)
and Remark 37 (page 66), that Ĩh(xk+1) ∈ H1

g,Θ, where Ĩh(xk+1) is the
interpolant of xk+1, as defined in (4.35).

We now present some simple facts about polynomials and periodic func-
tions.

Lemma 5.9. Let the shape functions {φh
i }i∈Z be reproducing of order k.

Then

(a) PΘxi = xi, 0 ≤ i ≤ k, (5.66)

(b) PΘĨh(xk+1) = Ĩh(xk+1), (5.67)

where Ĩh(xk+1) is the interpolant of xk+1 as defined in Section 4.

The proofs of these facts are immediate.

Lemma 5.10. Suppose f ∈ H1
g,Θ is periodic, i.e., f(x + xh

k) = f(x) for
all k. Then PΘf is also periodic.

Proof. Let f̃(x) = f(x+xh
k). Then [PΘf̃ ](x) = [PΘf ](x+xh

k). Now f(x) =
f̃(x) since f is periodic, and thus, from the uniqueness of the projection PΘ,
we have [PΘf ](x + xh

k) = [PΘf ](x), i.e., PΘf is periodic.

Remark 39. We note that, if

v(x) =
∑
i∈Z

ch
i φh

i (x)

is a periodic function, i.e., v(x + xh
k) = v(x) for any k, then v is a constant.

This could be shown as follows. Since v(x + xh
k) = v(x), we have

v(x + xh
k) =

∑
i∈Z

ch
i φh

i (x + xh
k) =

∑
i∈Z

ch
i+kφ

h
i (x) =

∑
i∈Z

ch
i φh

i (x) = v(x),

which implies that∑
i∈Z

[ch
i+k − ch

i ]φh
i (x) = 0, for all x ∈ R.
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Using (5.19), we can show that {φh
i }i∈Z is linearly independent in R. Thus

we deduce that ch
i+k = ch

i = C (constant), for all i ∈ Z. Recalling that
{φh

i }i∈Z forms a partition of unity, we get v(x) = C
∑

i∈Z
φh

i (x) = C.

We now define
ξΘ
k+1(x) ≡ xk+1 − PΘxk+1, (5.68)

which, together with the next lemma, will play a central role in the final
result of this section.

Lemma 5.11. Let ξΘ
k+1(x) be as defined in (5.68) and consider

ξh
k+1(x) = xk+1 −

∑
i∈Z

(xh
i )k+1φh

i (x)

as defined in (4.36). Then

ξΘ
k+1

′
(x) = ξh

k+1
′
(x). (5.69)

Proof. We first note, from the definition of Ĩhxk+1, that ξh
k+1(x) = xk+1 −

Ĩhxk+1. Now, using (5.67), we have

ξΘ
k+1 = xk+1 − PΘxk+1

= xk+1 − Ĩhxk+1 + Ĩhxk+1 − PΘxk+1

= ξh
k+1 − PΘ[xk+1 − Ĩhxk+1]

= ξh
k+1 − PΘ[ξh

k+1]. (5.70)

But we know from Lemma 4.1 that ξh
k+1(x) is periodic, and therefore from

Lemma 5.10 and Remark 39 we infer that PΘ[ξh
k+1] is a constant. Thus,

from (5.70), we get

ξΘ
k+1

′
(x) = ξh

k+1
′
(x),

which is the desired result.

Proof of Theorem 5.1. The proof will be given in several steps.

1. Let E be the extension operator satisfying (3.50). Then, for x ∈ BH ≡
BH(0), we have

[u0−uh](x) = [u0−PΘ(Eu0)−{Euh−PΘ(Euh)}+{PΘ(Eu0)−PΘ(Euh)}](x),

and therefore

(u′
0 − uh

′)(x) = {u0 − PΘ(Eu0)}′(x) − δ′h(x) + ρ′h(x), (5.71)

where

δh = Euh − PΘ(Euh), (5.72)
ρh = PΘ(Eu0) − PΘ(Euh). (5.73)
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Since u0 = Eu0 in BH(0), from Taylor’s theorem we have

Eu0(x) =
k∑

j=0

u
(j)
0 (0)
j!

xj +
u

(k+1)
0 (0)
(k + 1)!

xk+1 + Rk+1(Eu0)(x), (5.74)

where Rk+1(Eu0)(x) is the remainder given by

Rk+1(Eu0)(x) =
1

(k + 1)!

∫ x

0
(x − t)k+1(Eu0)(k+2)(t) dt. (5.75)

Since PΘ is a linear operator, we have

PΘ(Eu0)(x) =
k∑

j=0

u
(j)
0 (0)
j!

PΘxj +
u

(k+1)
0 (0)
(k + 1)!

PΘxk+1 + PΘRk+1(Eu0)(x).

(5.76)
We know from (5.66) that PΘxj = xj , 0 ≤ j ≤ k. Therefore, by first
subtracting (5.76) from (5.74), then differentiating the identity, and finally
using (5.69), we have

{Eu0 − PΘ(Eu0)}′(x)

=
u

(k+1)
0 (0)
(k + 1)!

{xk+1 − PΘxk+1}′(x) + [Rk+1(Eu0)]′(x) − [PΘRk+1(Eu0)]′(x)

=
u

(k+1)
0 (0)
(k + 1)!

ξΘ
k+1

′
(x) + [Rk+1(Eu0)]′(x) − [PΘRk+1(Eu0)]′(x)

=
u

(k+1)
0 (0)
(k + 1)!

ξh
k+1

′
(x) + [Rk+1(Eu0)]′(x) − [PΘRk+1(Eu0)]′(x). (5.77)

Thus from (5.71), (5.77), and using eh(x) ≡ [u0−uh](x), we get for x ∈ BH ,

eh
′(x) − u

(k+1)
0 (0)
(k + 1)!

ξΘ
k+1

′
(x)

= [Rk+1(Eu0)]′(x) − [PΘRk+1(Eu0)]′(x) − δ′h + ρ′h. (5.78)

2. From (5.75), we have

[Rk+1(Eu0)]′(x) =
1
k!

∫ x

0
(x − t)k(Eu0)(k+2)(t) dt,

and since ‖u0‖W k+2
∞ (B2H) ≤ C, we have, for x ∈ B2H ,∫

BH

|[Rk+1(Eu0)]′|2 dx ≤
∫

B2H

g|[Rk+1(Eu0)]′|2 dx

≤ CH2k+2H|u0|2W k+2
∞ (B2H)

. (5.79)
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Similarly, again from (5.75), we get∫
BH

|Rk+1(Eu0)|2 dx ≤
∫

B2H

g|Rk+1(Eu0)|2 dx

≤ CH2k+4H|u0|2W k+2
∞ (B2H)

. (5.80)

3. It can be shown from the definition of g(x) that, for 0 ≤ j ≤ k + 1,∫ ∞

2H
gx2j dx =

∫ ∞

2H
e−α(x−H)x2j dx ≤ Ce−αH , (5.81)

where C depends on k + 1. Now, from (5.65) we get∫
BH

|[PΘRk+1(Eu0)]′|2 dx ≤ ‖PΘRk+1(Eu0)‖2
1,g ≤ C‖Rk+1(Eu0)‖2

1,g.

(5.82)
We note that, from (5.74), we have

[Rk+1(Eu0)]′(x) = (Eu0)′(x) −
k∑

j=0

u
(j+1)
0 (0)
(j + 1)!

xj .

Therefore, using (5.81) and the fact that∫ ∞

2H
g|(Eu0)′|2 dx ≤ e−αH

∫ ∞

2H
|(Eu0)′|2 dx ≤ e−αH |Eu0|2H1(R),

we have∫ ∞

2H
g|[Rk+1(Eu0)]′|2 dx

≤ C

∫ ∞

2H
g|(Eu0)′|2 dx + C

k∑
j=0

(
u

(j+1)
0 (0)
(j + 1)!

)2 ∫ ∞

2H
gx2j dx

≤ Ce−αH{|Eu0|2H1(R) + C‖u0‖2
W k+1

∞ (B2H)
}

≤ Ce−αH{‖u0‖2
H1(Ω) + C‖u0‖2

W k+2
∞ (B2H)

}, (5.83)

where C depends on k. Similarly, we can show that∫ −2H

−∞
g|[Rk+1(Eu0)]′|2 dx ≤ Ce−αH{‖u0‖2

H1(Ω) + C‖u0‖2
W k+2

∞ (B2H)
},

which together with (5.83) imply that∫
R−B2H

g|[Rk+1(Eu0)]′|2 dx ≤ Ce−αH{‖u0‖2
H1(Ω) + C‖u0‖2

W k+2
∞ (B2H)

}.

(5.84)
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Using similar arguments, we can show that∫
R−B2H

g|Rk+1(Eu0)|2 dx ≤ Ce−αH{‖u0‖2
L2(Ω) + C‖u0‖2

W k+2
∞ (B2H)

}. (5.85)

Now, combining (5.79), (5.80), (5.82), (5.84), and (5.85) we get∫
BH

|[PΘRk+1(Eu0)]′|2 dx

≤ C‖Rk+1(Eu0)‖2
1,g

= C

∫
R

g|[Rk+1(Eu0)]′|2 dx + CΘ̄
∫

R

g|Rk+1(Eu0)|2 dx

≤ C(1 + Θ̄H2)H2k+2H|u0|2W k+2
∞ (B2H)

+ C(1 + Θ̄)e−αH{‖u0‖2
H1(Ω) + C‖u0‖2

W k+2
∞ (B2H)

}. (5.86)

4. We first note from (5.72) that∫
BH

δ′h
2 dx ≤ ‖δh‖2

1,g = ‖Euh − PΘ(Euh)‖2
1,g. (5.87)

Let PΘ(Euh) = Ĩ∗
hEuh + E . Then E ∈ Sh. Now from Lemma 5.6 and the

definition of PΘ, we have, for all v ∈ Sh,

BΘ(E , v) = BΘ(PΘ(Euh) − Ĩ∗
hEuh, v)

= BΘ(Euh − Ĩ∗
hEuh, v)

≤ C‖Euh − Ĩ∗
hEuh‖1,g‖v‖1,g−1 ,

and hence from Lemma 5.7 we get

‖E‖1,g ≤ C sup
v∈Sh

BΘ(E, v)
‖v‖1,g−1

≤ C‖Euh − Ĩ∗
hEuh‖1,g.

Thus,

‖Euh − PΘ(Euh)‖1,g ≤ ‖Euh − Ĩ∗
hEuh‖1,g + ‖E‖1,g

≤ C‖Euh − Ĩ∗
hEuh‖1,g. (5.88)

We now estimate the right-hand side of the above inequality. We first note
that Euh(x) = uh(x) for x ∈ Ω. Consider Ω ⊂ Ω such that (see Remark 35
on page 61)

B2H ⊂ Ω and Ĩ∗
hEuh|Ω = Euh|Ω = uh|Ω.
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Therefore, from Lemma 5.3 and using (5.5),∫
R

g[(Euh − Ĩ∗
hEuh)′]2 dx =

∫
R−Ω

g[(Euh − Ĩ∗
hEuh)′]2 dx

≤ e−αH [|Euh|2H1(R) + |Ĩ∗
hEuh|2H1(R)]

≤ Ce−αH [|Euh|2H1(R) +
1
h2

‖Euh‖2
L2(R)]

≤ C

h2
e−αH‖uh‖2

H1(Ω)

≤ C

h2
e−αH‖u0‖2

H1(Ω). (5.89)

Similarly, we can show using Remark 36 (on page 62) that∫
R

g[Euh − Ĩ∗
hEuh]2 dx ≤ Ce−αH‖u0‖2

L2(Ω),

and thus combining this estimate with (5.89) we get

‖Euh − Ĩ∗
hEuh‖2

1,g ≤ CΘ̄
h2

e−αH‖u0‖2
H1(Ω).

Now, from (5.87), (5.88), and the above estimate, we get∫
BH

δ′h
2 dx ≤ CΘ̄

h2
e−αH‖u0‖2

H1(Ω). (5.90)

5. We first note from (5.73) that∫
BH(0)

ρ′h
2 dx ≤ ‖ρh‖2

1,g = ‖PΘ(Eu0) − PΘ(Euh)‖2
1,g. (5.91)

Now, using (5.4), we have, for all v ∈ Sh,

BΘ(ρh, v)

= BΘ(PΘEu0 − PΘEuh, v)

= BΘ(Eu0 − Euh, v)

= BΩ(Eu0 − Euh, v) + BR−Ω(Eu0 − Euh, v) + ΘDR(Eu0 − Euh, v)

= BΩ(u0 − uh, v) + BR−Ω(Eu0 − Euh, v) + ΘDR(Eu0 − Euh, v)

= BR−Ω(Eu0 − Euh, v) + ΘDR−Ω(Eu0 − Euh, v) + ΘDΩ(Eu0 − Euh, v)

= BR−Ω
Θ (Eu0 − Euh, v) + ΘDΩ(u0 − uh, v). (5.92)
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Also, for v ∈ Sh,

BR−Ω
Θ (Eu0 − Euh, v)

=
∫

R−Ω
[(Eu0 − Euh)′v′ + Θ̄(Eu0 − Euh)v] dx

≤ C|||Eu0 − Euh|||1,g,R−Ω |||v|||1,g−1,R−Ω

≤ C|||Eu0 − Euh|||1,g,R−Ω ‖v‖1,g−1 , (5.93)

where

|||v|||21,g−1,R−Ω =
∫

R−Ω
g−1v′2 dx + Θ̄

∫
R−Ω

g−1v2 dx;

|||Eu0 − Euh|||21,g,R−Ω =
∫

R−Ω
g(Eu0 − Euh)′2 dx

+ Θ̄
∫

R−Ω
g(Eu0 − Euh)2 dx.

From the definition of g(x), we can show that

|||Eu0 − Euh|||21,g,R−Ω ≤ e−αHΘ̄‖Eu0 − Euh‖2
H1(R−Ω)

≤ Ce−αHΘ̄‖u0 − uh‖2
H1(Ω)

≤ Ce−αHΘ̄‖u0‖2
H1(Ω). (5.94)

Now, using the definition of g(x) and (5.6) with R = 2H, we get∫
Ω

g(u0 − uh)2 dx =
∫

B2H

g(u0 − uh)2 dx +
∫

Ω−B2H

g(u0 − uh)2 dx

≤ ‖u0 − uh‖2
L2(B2H) + e−αH‖u0 − uh‖2

L2(Ω)

≤ Ch2k+2H‖u0‖2
Hk+1(Ω) + e−αH‖u0‖2

H1(Ω),

and therefore

Θ
‖v‖1,g−1

DΩ(u0 − uh, v)

=
Θ

‖v‖1,g−1

∫
Ω
(u0 − uh)v dx

≤ Θ
‖v‖1,g−1

(∫
Ω

g(u0 − uh)2 dx

)1/2(∫
Ω

g−1v2 dx

)1/2

≤ Θ
1
2 Chk+1H

1
2 ‖u0‖Hk+1(Ω) + Θ

1
2 e−αH/2‖u0‖H1(Ω). (5.95)
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From the inf-sup condition (5.46) and using (5.92) and (5.93), we have

‖ρh‖1,g ≤ C sup
v∈Sh

BΘ(ρh, v)
‖v‖1,g−1

≤ C|||Eu0 − Euh|||1,g,R−Ω + sup
v∈Sh

Θ
‖v‖1,g−1

DΩ(u0 − uh, v),

and thus, using (5.91), (5.94) and (5.95), we have∫
BH

ρ′h
2 dx ≤ ‖ρh‖2

1,g

≤ Ce−αHΘ̄‖u0‖2
H1(Ω) + CΘh2k+2H‖u0‖2

Hk+1(Ω). (5.96)

6. We first note from (5.69) that ξΘ
k+1

′(x) = ξh
k+1

′(x), where ξh
k+1 is defined

in (4.36). Let T (u0) ≡ u
(k+1)
0 (0)
(k+1)! . Then, from (5.78), we have

eh
′(x) − T (u0)ξh

k+1
′
(x)

= [Rk+1(Eu0)]′(x) − [PΘRk+1(Eu0)]′(x) − δ′h + ρ′h,

and therefore, from (5.79), (5.86), (5.90), and (5.96), we have∫
BH

(
eh

′ − T (u0)ξh
k+1

′)2 dx

≤ C

∫
BH

|[Rk+1(Eu0)]′|2 dx + C

∫
BH

|[PΘRk+1(Eu0)]′|2 dx

+ C

∫
BH

δ′h
2 dx + C

∫
BH

ρ2
h dx

≤ CH2k+2H|u0|2W k+2
∞ (B2H)

+ C(1 + Θ̄H2)H2k+2H|u0|2W k+2
∞ (B2H)

+ C(1 + Θ̄)e−αH{‖u0‖2
H1(Ω) + C‖u0‖2

W k+2
∞ (B2H)

} +
CΘ̄
h2

e−αH‖u0‖2
H1(Ω)

+ Ce−αHΘ̄‖u0‖2
H1(Ω) + CΘh2k+2H‖u0‖2

Hk+1(Ω)

≤ C

[
H2k+2H + (1 + Θ̄H2)H2k+2H + (1 + Θ̄)e−αH

+
Θ̄
h2

e−αH + Θh2k+2H

]
M(u0), (5.97)

where

M(u0) = ‖u0‖2
Hk+1(Ω) + ‖u0‖2

W k+2
∞ (B2H)

.
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We will now choose α, Θ, and H, where H = hγ and γ < 1. First we
choose γ such that

Hk+2 = hk+1, (5.98)

which implies that

hγ(k+2) = hk+1, or
γ(k + 2) = k + 1, or

γ =
k + 1
k + 2

< 1.

Let ε > 0, which depends on γ, be such that ε∗ ≡ 1 − γ − ε > 0. We will
now choose α such that

e−αH ≤ h2k+2h2h2γ+2εH = h2k+4+3γ+2ε. (5.99)

This implies that
α ≥ C1(ln h−1)h−γ ,

where C1 = 2k + 4 + 3γ + 2ε. Since h−ε > lnh−1 for small h, we take

α ≡ C1h
−(γ+ε). (5.100)

We now choose
Θ̄ ≡ (C2)2h−2(γ+ε), C2 > C1. (5.101)

We note from (5.100) that αh = C1h
1−γ−ε = C1h

ε∗ < 1 for small h, and
limh→0 αh = 0. Thus αh can be made sufficiently small; this was one of
the assumptions in Lemma 5.8. Also, by choosing C2 sufficiently large in
(5.101), we can make α2

Θ̄
= (C1/C2)2 � 1, i.e., sufficiently small, which was

another assumption in Lemma 5.8. Thus the conclusion of Lemma 5.8 is
true for the choices of α and Θ̄ given in (5.100) and (5.101), respectively.

Now, for these choices of γ, α, and Θ̄, we have

Θ̄h2k+2 = Θ̄h2(γ+ε)h2kh2(1−γ−ε) = C2
2h2k+2ε∗ . (5.102)

Using (5.98) and (5.102) we have

Θ̄H2H2k+2 = Θ̄H2k+4 = Θ̄h2k+2 = C2
2h2k+2ε∗ . (5.103)

Also, from (5.99), we get

Θ̄e−αH ≤ h2k+4HΘ̄h2γ+2ε ≤ C2
2h2k+2H, (5.104)

and
Θ̄
h2

e−αH ≤ h2k+2HΘ̄h2γ+2ε = C2
2h2k+2H. (5.105)

Thus, using (5.98) and (5.102)–(5.105) in (5.97), we obtain

‖eh
′ − T (u0)ξh

k+1
′‖L2(BH) ≤ Chk+ε∗H1/2M(u0)

1
2 , (5.106)
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and hence, using (5.7) with ρ = H, we have

‖eh
′ − T (u0)ξh

k+1
′‖L2(BH)

‖eh
′‖L2(BH)

≤ Chε∗ ,

where M(u0)
1
2 /‖u0‖Hk+1(Ω) ≤ C, which is the desired result.

Remark 40. The balancing of various terms in step 6 of the proof of
Theorem 5.1 is similar to the balancing used in the proof of superconvergence
of FEM solutions (see Babuška and Strouboulis (2001) and Babuška et al.
(1996)).

Remark 41. Assuming that our superconvergence result is valid in L∞,
i.e., assuming that for x ∈ BH there exists ε∗ > 0, such that

e′h(x) = A(u0)hkξk+1
′
(

x

h

)
+ O(hk+ε∗),

we see that the zeros of ξk+1
′(x

h) are the superconvergence points. In Fig-
ure 5.1, we have presented the plot of ξk+1

′(y) for the RKP shape functions,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

ξ 2′ (x
)

For RKP shape function, p = 1

Conical ω(x) with l = 2, R = 1.8

For FE ‘tent’ shape function

Figure 5.1. The plot of ξ2
′(y), 0 ≤ y ≤ 1 for (a) RKP shape

functions, reproducing of order k = 1, corresponding to the
conical weight function with l = 2, R = 1.8, (b) standard
‘tent’ functions used in the FEM.
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reproducing of order k = 1, with respect to the weight function w(x) given
by (4.4) with l = 2 in one dimension. We have also included the plot of
ξk+1

′(y), k = 1 (the dashed curve) for the standard tent functions that are
used as shape functions in the FEM. We note that ξ2

′(y) for the tent function
has only one zero, whereas ξ2

′(y) has five zeros. Thus the superconvergence
points for the RKP shape function could be distributed quite differently to
the corresponding points for standard tent functions in the FEM.

6. The generalized finite element method

The idea of the generalized finite element method (GFEM) was first in-
troduced in Babuška et al. (1994) to address elliptic problems with rough
coefficients. This idea was later extended, and called the partition of unity
method (PUM), in Babuška and Melenk (1997) and Melenk and Babuška
(1996). In the current literature, the PUM is referred to as the particle-
partition of unity method (Griebel and Schweitzer 2002a, 2002b, 2002c), the
method of finite spheres (De and Bathe 2001), the cloud method (Oden,
Duarte and Zienkiewicz 1998), the eXtended finite element method (Daux,
Moes, Dolbow, Sukumar and Belytschko 2000), and the GFEM (Strouboulis
et al. 2001a, 2001b). In this section, we will first describe the GFEM and
present the relevant approximation results. We will then discuss the selec-
tion of an optimal or near-optimal approximating space, to be used in the
GFEM, in certain situations.

6.1. Description of the GFEM and related approximation results

In this section we will discuss the GFEM in the context of general particle-
shape function systems, which were discussed in Section 3.3. Suppose u0

is the solution of our model problem (2.1), (2.2) (or (2.3)). We consider a
family {Mν}ν∈N of particle-shape function systems satisfying assumptions
A1–A7 with k = 0 and Aν

x = I; assumption A5 then reads∑
x∈Xν

φν
x(x) = 1, for all x ∈ R

n. (6.1)

The partition of unity (6.1) is the starting point of the GFEM. We will need
additional assumptions on {Mν}ν∈N , namely,

‖φν
x‖L∞(Rn) ≤ C1 (6.2)

and

‖∇φν
x‖L∞(Rn) ≤

C2

diam(ην
x)

, (6.3)
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for all x ∈ Xν , and all ν ∈ N . In (6.3), we implicitly assume that q >
(n/2) + 1. We also assume that there is a constant C such that

diam(ην
x) ≤ C, for all x ∈ Xν and ν.

For each x ∈ Xν , we assume that we have a finite-dimensional space V ν
x

of functions with good approximation properties. We refer to V ν
x as local

approximating spaces. We define a set of particles Aν
Ω, namely,

Aν
Ω = {x ∈ Xν : η̊ν

x ∩ Ω 	= ∅}, (6.4)

for each ν ∈ N . From (6.1) we have∑
x∈Aν

Ω

φν
x(x) = 1, for all x ∈ Ω. (6.5)

For an approximating space on Ω, we then consider

V ν =

{
v
∣∣
Ω

: v =
∑

x∈Aν
Ω

φν
xψν

x, where ψν
x ∈ V ν

x

}
. (6.6)

The GFEM is the Galerkin method (2.7) with B̃ = B and S = V ν ,
and we will denote the approximate solution uS , obtained from the GFEM,
by uGFEM. When GFEM is used to approximate the solution u0 of the
Neumann problem, V ν

x can be any finite-dimensional subspace of H1(η̊ν
x).

But when the GFEM is used to approximate the solution u0 of the Dirichlet
problem, with the boundary condition (2.3), the functions in V ν

x are required
to satisfy v|η̊ν

x∩∂Ω = 0, for particles x for which |̊ην
x ∩ Ω| > 0. Thus the

approximating space V ν ⊂ H1
0 (Ω).

Our next theorem states an approximation result for V ν . We will follow
the ideas presented in Babuška et al. (2002a, 1994), Babuška and Melenk
(1997), Melenk and Babuška (1996), and Strouboulis et al. (2001a, 2001b).

Theorem 6.1. Suppose u ∈ H1(Ω) and suppose, for all x ∈ Aν
Ω, there

exists ψν
x ∈ V ν

x such that

‖u − ψx‖L2(ην
x∩Ω) ≤ ε1(x), (6.7)

‖∇(u − ψx)‖L2(ην
x∩Ω) ≤ ε2(x). (6.8)

Then the function
uap =

∑
x∈Aν

Ω

φν
xψν

x ∈ V ν (6.9)

satisfies

‖u − uap‖L2(Ω) ≤ κ1/2C1


 ∑

x∈Aν
Ω

ε2
1(x)




1/2

(6.10)
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and

‖∇(u − uap)‖L2(Ω) ≤ (2κ)1/2


 ∑

x∈Aν
Ω

(
C2

diam(ην
x)

)2

ε2
1(x) + C2

1ε2
2(x)




1/2

,

(6.11)
where C1 and C2 are given in (6.2) and (6.3).

Proof. We will prove only (6.11), since (6.10) can be proved similarly. Since
φν

x, for x ∈ Aν
Ω, form a partition of unity for Ω (see (6.5)), we have

‖∇(u − uap)‖2
L2(Ω)

= ‖∇
∑

x∈Aν
Ω

φν
x(u − ψx)‖2

L2(Ω)

≤ 2‖
∑

x∈Aν
Ω

(u − ψx)∇φν
x‖2

L2(Ω) + 2‖
∑

x∈Aν
Ω

φν
x∇(u − ψx)‖2

L2(Ω). (6.12)

For any x ∈ Ω, the sums
∑

x∈Aν
Ω
(u−ψx)∇φν

x and
∑

x∈Aν
Ω

φν
x∇(u−ψx) have

at most κ nonzero terms (see Remark 16 and (3.60)). Therefore,∣∣∣∣∣
∑

x∈Aν
Ω

(u − ψx)∇φν
x

∣∣∣∣∣
2

≤ κ
∑

x∈Aν
Ω

|(u − ψx)∇φν
x|2,

and ∣∣∣∣∣
∑

x∈Aν
Ω

φν
x∇(u − ψx)

∣∣∣∣∣
2

≤ κ
∑

x∈Aν
Ω

|φν
x∇(u − ψx)|2.

Hence, from (6.12), (6.7), (6.8), recalling that supp(φν
x) = ην

x, we have

‖∇(u − uap)‖2
L2(Ω)

≤ 2κ
∑

x∈Aν
Ω

‖(u − ψx)∇φν
x‖2

L2(Ω) + 2κ
∑

x∈Aν
Ω

‖φν
x∇(u − ψx)‖2

L2(Ω)

= 2κ
∑

x∈Aν
Ω

‖(u − ψx)∇φν
x‖2

L2(Ω∩ην
x) + 2κ

∑
x∈Aν

Ω

‖φν
x∇(u − ψx)‖2

L2(Ω∩ην
x)

≤ 2κ
∑

x∈Aν
Ω

((
C2

diam(ην
x)

)2

ε2
1(x) + C2

1ε2
2(x)

)
,

which is the desired result.

Remark 42. We note that ε1(x), ε2(x) in (6.7), (6.8) depend on the pa-
rameter ν.
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We will now show that both terms of estimate (6.11) are of the same order
with additional assumptions on V ν . These additional assumptions depend
on the boundary conditions of the approximated function.

Theorem 6.2. Suppose u0 ∈ H1(Ω) is the solution of the Neumann prob-
lem (2.1), (2.2), and suppose there exists ψν

x ∈ V ν
x , x ∈ Aν

Ω, such that (6.7)
and (6.8) are satisfied. Moreover, assume that, for x ∈ Ah

Ω, the space V ν
x

contains constant functions and that

inf
λ∈R

‖v−λ‖L2(ην
x∩Ω) ≤ C (diam(ην

x)) ‖∇v‖L2(ην
x∩Ω), for all v ∈ H1(ην

x ∩Ω),

(6.13)
where C is independent of x ∈ Xν and ν. Then there exists ψ̃ν

x ∈ V ν
x so

that the corresponding function,

ũap =
∑

x∈Aν
Ω

φν
xψ̃ν

x ∈ V ν ,

satisfies

‖u0 − ũap‖H1(Ω) ≤ C


 ∑

x∈Ah
Ω

ε2
2(x)




1/2

, (6.14)

where C is independent of u0 and ν.

Proof. Let ψν
x ∈ V ν

x , x ∈ Aν
Ω, satisfy (6.7) and (6.8). Define ψ̃ν

x = ψν
x + rν

x,
where rν

x ∈ R satisfies

‖u0 − ψ̃ν
x‖L2(ην

x∩Ω) = inf
λ∈R

‖u0 − ψν
x − λ‖L2(ην

x∩Ω). (6.15)

Since V ν
x contains constant functions, it is clear that ψ̃x ∈ Vx. Also, from

(6.15), (6.13) with v = u0 − ψν
x, and (6.8), we have

‖u − ψ̃x‖L2(ην
x∩Ω) ≤ C diam(ην

x) ‖∇(u − ψν
x)‖L2(ην

x∩Ω)

≤ C diam(ην
x) ε2(x). (6.16)

Let ũap =
∑

x∈Aν
Ω

φν
xψ̃x. Recall that φν

x, x ∈ Aν
Ω, is a partition of unity

for Ω. Then, following the arguments in the proof of Theorem 6.1 and using
(3.60), (6.2), we can show that

‖u − ũap‖2
L2(Ω) =

∥∥∥∥∥∥
∑

x∈Ah
Ω

φν
x(u − ψ̃x)

∥∥∥∥∥∥
2

L2(Ω)

≤ κ
∑

x∈Ah
Ω

‖φν
x(u − ψ̃x)‖2

L2(Ω)
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= κ
∑

x∈Ah
Ω

‖φν
x(u − ψ̃x)‖2

L2(Ω∩ην
x)

≤ C
∑

x∈Ah
Ω

‖(u − ψ̃x)‖2
L2(Ω∩ην

x), (6.17)

and using (6.16) in this inequality we get

‖u − ũap‖2
L2(Ω) ≤ C

∑
x∈Ah

Ω

(diam(ην
x))2ε2

2(x). (6.18)

Again, following the arguments in the proof of Theorem (6.1), and using
(6.2), (6.3), we can show that

‖∇(u − ũap)‖2
L2(Ω)

≤ 2κ
∑

x∈Aν
Ω

‖(u − ψ̃ν
x)∇φν

x‖2
L2(Ω∩ην

x) + 2κ
∑

x∈Aν
Ω

‖φν
x∇(u − ψ̃ν

x)‖2
L2(Ω∩ην

x)

≤ C
∑

x∈Ah
Ω

1
(diam(ην

x))2
‖u − ψ̃ν

x‖2
L2(Ω∩ην

x)

+ C
∑

x∈Ah
Ω

‖∇(u − ψ̃ν
x)‖2

L2(Ω∩ην
x). (6.19)

By first noting that ∇(u− ψ̃ν
x) = ∇(u−ψν

x), and then using (6.16) and (6.8)
in the above inequality, we get

‖∇(u − ũap)‖2
L2(Ω) ≤ C

∑
x∈Aν

Ω

ε2
2(x). (6.20)

Combining this with (6.18) we get (6.14), where we used that diam(ην
x) ≤ C

for all x ∈ Xν and ν.

Theorem 6.3. Suppose u0 ∈ H1
0 (Ω) is the solution of the Dirichlet prob-

lem (2.1), (2.3), and suppose V ν
x , x ∈ Aν

Ω, satisfy the following assumptions.

(a) For all x ∈ Ah
Ω such that ην

x ∩ ∂Ω = ∅, V ν
x contains constant functions,

and (6.7), (6.8), and (6.13) hold.

(b) For all x ∈ Ah
Ω such that |ην

x ∩ ∂Ω| > 0, functions v ∈ V ν
x satisfy

v
∣∣
ην

x∩∂Ω
= 0, and there is a constant C, independent of x and ν, such

that

‖v‖L2(ην
x∩Ω) ≤ C (diam(ην

x)) ‖∇v‖L2(ην
x∩Ω), (6.21)

for all v ∈ H1(ην
x ∩Ω) satisfying v = 0 on ∂Ω. Moreover (6.7) and (6.8)

hold for u satisfying u
∣∣
ην

x∩∂Ω
= 0.
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Then there exists ψ̃ν
x ∈ V ν

x so that the corresponding function,

ũap =
∑

x∈Aν
Ω

φν
xψ̃ν

x ∈ V ν ,

satisfies

‖u0 − ũap‖H1(Ω) ≤ C


 ∑

x∈Ah
Ω

ε2
2(x)




1/2

, (6.22)

where C is independent of u0 and ν.

Proof. We first divide the set Aν
ω into two disjoint sets, namely,

Aν
Ω,I = {x ∈ AΩ : ην

x ∩ ∂Ω = ∅}, and

Aν
Ω,B = {x ∈ AΩ : ην

x ∩ ∂Ω 	= ∅}.

Let ψν
x ∈ V ν

x , x ∈ Aν
Ω, satisfy (6.7) and (6.8). Define ψ̃ν

x, for x ∈ Aν
Ω,I , as in

the proof of Theorem 6.2. We know from assumption (a) that, for x ∈ Aν
Ω,I ,

(6.13) holds and V ν
x contains constant functions. Therefore, following the

argument leading to (6.16) in Theorem 6.2, we get

‖u0 − ψ̃x‖L2(ην
x∩Ω) ≤ C diam(ην

x) ε2(x), x ∈ Aν
Ω,I . (6.23)

For x ∈ Aν
Ω,B, we set ψ̃ν

x = ψν
x. Now, u0

∣∣
ην

x∩∂Ω
= 0, and from assumption (b),

we know that ψν
x

∣∣
ην

x∩∂Ω
= 0 for x ∈ Aν

Ω,B. Thus, using (6.21), with v =

u0 − ψν
x, and (6.8), we have

‖u0 − ψ̃x‖L2(ην
x∩Ω) = ‖u − ψx‖L2(ην

x∩Ω)

≤ C diam(ην
x) ε2(x), x ∈ Aν

Ω,B. (6.24)

Following the same steps that lead to (6.17) in the proof of Theorem 6.2,
and using (6.23) and (6.24), we get

‖u0 − uap‖2
L2(Ω) ≤ C

∑
x∈Aν

Ω

‖u0 − ψ̃ν
x‖2

L2(ην
x∩Ω)

= C
∑

x∈Aν
Ω,I

‖u0 − ψ̃ν
x‖2

L2(ην
x∩Ω) + C

∑
x∈Aν

Ω,B

‖u0 − ψ̃ν
x‖2

L2(ην
x∩Ω)

≤ C
∑

x∈Aν
Ω

(diam(ην
x))2ε2

2(x). (6.25)

Similarly, following the steps leading to (6.20) in the proof of Theorem 6.2,
we get

‖∇(u − ũap)‖2
L2(Ω) ≤ C

∑
x∈Aν

Ω

ε2
2(x), (6.26)
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and combining this with (6.25), we get (6.22), where we used the assumption
that diam(ην

x) ≤ C for all x ∈ Xν and ν.

Remark 43. It is clear from (6.14) and (2.8) that, if u0 is the solution of
(2.1), (2.2), then

‖u0 − uGFEM‖H1(Ω) ≤ C


 ∑

x∈Xν

ε2
2(x)




1/2

,

provided the local approximation spaces V ν
x contain constant functions, and

(6.13) holds. The above estimate is also true if u0 is the solution of (2.1),
(2.3) provided conditions (a) and (b) of Theorem 6.3 are satisfied. We
note that, in the latter case, i.e., when u0 satisfies the Dirichlet boundary
condition, u0|∂Ω = 0, the space V ν

x , corresponding to a particle x such
that ην

x intersects ∂Ω, does not need to include constant functions, but the
functions in V ν

x have to satisfy the Dirichlet boundary condition on ην
x ∩∂Ω.

Remark 44. Conditions (a), (b) in Theorem 6.3, and (6.13) are known
as the uniform Poincaré property. These conditions put restrictions on the
shapes of the {ην

x}. For a detailed discussion of this property, see Babuška
and Melenk (1997).

Remark 45. The constant C2 in (6.3) is related to the ratio of the radius
of the largest ball contained in ην

x to the radius of the smallest ball that
contains ην

x. A similar condition is also assumed in the classical FEM. If
this ratio is uniformly bounded for all x ∈ Aν

Ω and ν, then (6.13) holds.

Remark 46. In practical computations, one can easily construct particle-
shape function systems (with k = 0), such that conditions (6.2), (6.3), (6.13),
and conditions (a), (b) of Theorem 6.3 are satisfied.

Remark 47. We observed that a partition of unity is the starting point
for the construction of approximating space for the GFEM. It is important
to emphasize that the construction of partition unity for k = 0 is simple:
for instance, it could be constructed by Shepard’s approach, as discussed in
Section 4.

Remark 48. We have assumed that our particle-shape function system
satisfies A1–A7 with k = 0 (and hence it reproduces polynomials of de-
gree 0), and we have seen that the quality of the approximation in Theorems
6.1–6.3 depends entirely on the approximability properties of the spaces V ν

x ,
as quantified by ε1(x) and ε2(x). If we used a particle-shape function system
that reproduced polynomials of degree 1 (k = 1), then the space V ν defined
in 6.6 would be enlarged, and its approximability would be improved, pos-
sibly only marginally, but this improvement would not be directly visible
from (6.11) (or (6.14) or (6.18)). Note that Theorems 6.1–6.3 are directed
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towards the use of nonpolynomial approximating functions, where the rate
of convergence cannot be easily defined.

To clarify this point, suppose that for φν
x we use the usual FE hat functions

of degree 1, and V ν
x is the space of constants. Then the GFEM is the classical

FEM, with the usual rate of convergence of O(h). However, (6.11) (or (6.14)
or (6.18)) does not establish this rate. As a second example, let V ν

x be the
space of linear polynomials. Then the GFEM is a FE method, but not a
usual one. The method has the rate of convergence O(h2), but (6.11) (or
(6.14) or (6.18)) only establishes O(h).

Remark 49. The space W
k′,q
Ω,h, introduced near the end of Section 3.3, is

a special case of the space V ν , where we take V ν
x to be Pk′

(η̊h
x). The proof

of Theorem 3.13 is obtained directly from Theorems 6.1–6.3 by considering
V ν

x = Pk′
(η̊h

x) and applying a standard polynomial approximation result.

The estimates in Theorems 6.2 and 6.3 are quite general, and allow us to
employ available information on the approximated function u. Convergence
of the approximation can be obtained by considering νi ∈ N, i = 1, 2, . . . ,
such that hνi ↓ 0, where hν is defined in (3.79). This is reminiscent of the h-
version of the FEM. Convergence of the approximation can also be attained
by keeping ν fixed, and selecting a sequence of spaces V ν,i

x , i = 1, 2, . . . ,
so that they are complete in H1(η̊ν

x) or in a space W(η̊ν
x) ⊂ H1(η̊ν

x) that is
known to include the approximated function u0. This is a generalization of
the p-version of the FEM.

6.2. Selection of Vx̄ and ‘handbook’ problems

We saw in Section 6.1 that it is important to select spaces V ν
x with good

local approximation properties. Principles for selecting shape functions that
take advantage of available information on the approximated function were
formulated in Babuška, Banerjee and Osborn (2001, 2002b). We will use
these ideas to discuss the selection of the space V ν

x . In this section we will
suppress ν in our notation.

Let H1(ηx) and H2(ηx) be two Hilbert spaces, and suppose H2(ηx) ⊂
H1(ηx). Then

dn(H2, H1) = inf
Sn⊂H1

dim Sn=n

sup
u∈H2

‖u‖H2
≤1

inf
χ∈Sn

‖u − χ‖H1

is called the n-width of the H2-unit ball in H1. Let V
(n)
x be an n-dimensional

subspace of H1, and let

Ψ(V (n)
x , H2, H1) = sup

u∈H2

‖u‖H2
≤1

inf
χ∈V

(n)
x

‖u − χ‖H1 ,
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which is called the sup-inf. We will write Ψ(V (n)
x ) for Ψ(V (n)

x , H2, H1) if the
spaces H1, H2 are evident from context. It is clear that

dn(H2, H1) = inf
V

(n)
x ⊂H1

dim V
(n)
x =n

Ψ(V (n)
x , H2, H1).

If an n-dimensional subspace 0V
(n)
x satisfies

Ψ(0V (n)
x , H2, H1) ≤ Cdn(H2, H1),

where C > 1 is a constant, independent of n, then we will refer to 0V
(n)
x as a

nearly optimal subspace relative to H1 and H2. An n-dimensional subspace
0V̄

(n)
x that satisfies

Ψ(0V̄ (n)
x , H2, H1) = dn(H2, H1),

is referred to as an optimal subspace relative to H1 and H2. An optimal
subspace 0V̄

(n)
x leads to the minimal error that can be achieved with an n-

dimensional space, namely, dn(H2, H1); a nearly optimal subspace leads to
essentially the same error, dn(H2, H1).

Suppose we are interested in using the GFEM to approximate the solution
u0 of the Dirichlet problem,{

�u0 = 0, in Ω,

u0 = g, on ∂Ω,

where Ω is a bounded domain in R
2. Then, for each x ∈ Xν , we seek a

finite-dimensional space Vx that contains a good approximation ψx to u0 on
ηx (cf. (6.7), (6.8)). This will be done by taking advantage of the available
information on u0

∣∣
ηx∩Ω

, namely that u0

∣∣
ηx∩Ω

is harmonic. We now illustrate
this procedure.

We suppose that ηx is a disk in R
2 and, for the sake of simplicity, sup-

pose ηx is the unit disk. Let H1 = {u ∈ H1(η̊x) : u is harmonic in ηx}.
For the space H2, we use W(η̊x), a (regularity) space known to contain u0.
More precisely, we suppose W(η̊x) is a linear manifold in {u ∈ H1(η̊x) :
u is harmonic} and that |||u||| is a norm on W(η̊x) that is rotationally invari-
ant and satisfies ‖u‖H1(η̊x) ≤ |||u|||, for all u ∈ W(η̊x). Moreover, we assume
W(η̊x) is complete with respect to ||| · |||, i.e., {W(η̊x), ||| · |||} is a Hilbert space.
We note that W(η̊x) could be any higher-order (isotropic) Sobolev space.

It is well known that any u ∈ H1 is characterized by its trace on the
boundary I = ∂ηx; these traces will be in

S = {u : R → R : u is 2π-periodic, u ∈ H1/2(I)}.
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Any u ∈ S can be expanded in its Fourier series

u(θ) = a0 +
∞∑

k=1

(ak cos kθ + bk sin kθ). (6.27)

It is immediate that

|u|2
H1/2(I)

= a2
0 +

∞∑
k=1

(a2
k + b2

k)k,

where |u|H1/2(I) is a Sobolev norm of order 1/2 on I, and the series in
(6.27) converges in H1/2(I)-norm. So we have a one-to-one correspondence
between u(r, θ) ∈ H1 ((r, θ) are polar coordinates) and u(θ) ∈ S, which we
express by writing u(r, θ) ∼ u(θ). We easily find that

‖u‖2
H1(η̊x) = |u|2

H1/2(I)
= a2

0 +
∞∑

j=1

(a2
j + b2

j )j. (6.28)

Thus we identify the space H1 with H1/2(I).
Since |||u||| is rotationally invariant, the corresponding norm on u(θ) will

be translation-invariant, and we can thus show that

|||u|||2 = a2
0 +

∞∑
j=1

(a2
j + b2

j )jβj , (6.29)

where, since ‖u‖H1(η̊x) ≤ |||u|||, we have βj ≥ 1. If we now define

Hβ(I) = {u ∈ S : |u|β < ∞},
where

|u|2β = a2
0 +

∞∑
k=1

(a2
k + b2

k)kβk, (6.30)

then we see that u(r, θ) ∈ H2 if and only if u(θ) ∈ Hβ(I) and |||u||| = |u|β .
We thus identify the space H2 with Hβ(I).

We will now find an optimal subspace 0V
(n)
x relative to H1 and H2. We will

exploit the correspondence u(r, θ) ∼ u(θ), and find 0V
(n)
x by first identifying

an optimal subspace relative to H̄1 = H1/2(I) and H̄2 = Hβ(I).
Let Mn = {m1, m2, . . . , mn} be a set of n positive integers, and consider

V Mn =

{
u ∈ H1/2(I) : u = a0 +

∑
k∈Mn

(ak cos kθ + bk sin kθ)

}
. (6.31)

Clearly, V Mn is a (2n + 1)-dimensional space.
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Lemma 6.4. Let H̄1 = H1/2(I), H̄2 = Hβ(I), where β = (β1, β2, . . . ),
βk ≥ 1, and let V Mn be as defined in (6.31). Then

Ψ(V Mn , H̄2, H̄1) = (γ(V Mn))−
1
2 , (6.32)

where

γ(V Mn) = inf
i/∈Mn

βi.

Proof. Consider u ∈ H̄2 given by

u = a0 +
∞∑

k=1

(ak cos kθ + bk sin kθ).

Then, from (6.31) we get

inf
χ∈V Mn

|u − χ|2H̄1
=

∑
k∈N−Mn

(a2
k + b2

k)k,

where N is the set of all positive integers. Therefore, from (6.30) and the
definition of γ(V Mn) we have

inf
χ∈V Mn

|u − χ|2
H̄1

|u|2
H̄2

=

∑
k∈N−Mn

(a2
k + b2

k)k
a2

0 +
∑

k∈N (a2
k + b2

k)kβk

≤
∑

k∈N−Mn
(a2

k + b2
k)k∑

k∈N−Mn
(a2

k + b2
k)kβk

≤ 1
γ(V Mn)

.

Thus,

sup
u∈H̄2

inf
χ∈V Mn

|u − χ|2
H̄1

|u|2
H̄2

≤ 1
γ(V Mn)

. (6.33)

Let ε > 0 be arbitrary. Then there is an m0 /∈ Mn, m0 ≥ 1, such that

βm0 ≤ γ(V Mn) + ε. (6.34)

Consider um0 = cos m0θ. Clearly, um0 /∈ V Mn , and therefore, from (6.27),

inf
χ∈V Mn

|um0 − χ|2H̄1
= |um0 |2H̄1

= m0.

Also, from (6.30), we have |um0 |2H̄2
= m0βm0 . Therefore, using (6.34), we get

sup
u∈H̄2

inf
χ∈V Mn

|u − χ|2
H̄1

|u|2
H̄2

≥ inf
χ∈V Mn

|um0 − χ|2
H̄1

|um0 |2H̄2

=
1

βm0

≥ 1
γ(V Mn) + ε

.
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From this estimate and (6.33), we have

1
γ(V Mn) + ε

≤ sup
u∈H̄2

inf
χ∈V Mn

|u − χ|2
H̄1

|u|2
H̄2

≤ 1
γ(V Mn)

.

Since ε is arbitrary, we get (6.32).

Lemma 6.5. Let H̄1 = H1/2(I) and H̄2 = Hβ(I), where β = (β1, β2, . . . ),
βk ≥ 1. Then

d2n(H2, H1) = (γ∗
n)−

1
2 ,

where
γ∗

n = sup
m1,m2,...,mn

inf
i/∈Mn

βi.

The proof of this theorem follows immediately from Lemma 6.4.

Theorem 6.6. Suppose H1 = {u ∈ H1(η̊x) : u is harmonic} and H2 =
W(η̊x) with the norm |||u|||β = |u|β, given in (6.30), with βj ≥ 1. Suppose in
addition that the sequence βj is non-decreasing. Then the space

0V (2n+1)
x = span{rj cos jθ, rj sin jθ}n

j=0,

i.e., the span of first (2n + 1) harmonic polynomials, is optimal relative to
H1 and any H2 (i.e., any of the spaces H2 we are considering).

Proof. Using the correspondence u(r, θ) ∼ u(θ), we can study the optimal-
ity of a finite-dimensional subspace relative to H1 and H2, by studying the
optimality of a subspace relative to H̄1 and H̄2. The result follows directly
from Lemma 6.5.

Remark 50. Obviously the condition on β in Theorem 6.6 holds for any
(isotropic) Sobolev space.

Remark 51. Let us return to the solution of the Dirichlet problem men-
tioned above. Suppose ηx is far from the boundary of Ω. Then, on ηx, the
character of the solution u0 is approximately the same in any direction. Thus
it is appropriate to embed u0 in a space with a rotationally invariant norm
– a usual (isotropic) Sobolev space, for example. Further, we have learned
that, on ηx, u0 is well approximated by harmonic polynomials. The situa-
tion is, however, somewhat different when ηx is near the boundary. Then u0

would be strongly influenced by the boundary values g(x). Hence some other
shape functions, constructed, for example, by the ‘handbook’ approach (see
below), which themselves reflected these boundary values, would be ‘best’.

Thus the optimal shape functions are the solution of the Laplace equation.
This approach could also be used in other situations. Vekua (1967) defines
and studies analogues of harmonic polynomials for differential equations
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with analytic coefficients. Babuška and Melenk (1997) and Laghrouche and
Bettess (2000) construct and use special shape functions for the Helmholtz
equation, −∆u−ku = 0. Special shape functions for problems in composite
materials were used in Strouboulis, Zhang and Babuška (200x).

In this section, we saw an example of choosing an optimal local approx-
imating space Vx, which turned out to be the span of first (2n + 1) har-
monic polynomials. In other problems, different local approximating spaces,
consisting of optimal or near-optimal approximating functions, are recom-
mended. These optimal or near-optimal approximating functions are so-
lutions of other boundary value problems (posed on ηx ∩ Ω). Such locally
posed problems are called handbook problems and their solutions, which may
be available analytically or computed numerically, are called handbook func-
tions. This nomenclature is reminiscent of the solved problems and their
solutions (via formulae, tables etc.) which are used in engineering (Tada,
Paris and Irwin 1973). This idea is also used in commercial codes (Szabo,
Babuška and Actis 1998).

One of the main advantages of the GFEM is that only simple meshes
are used, which need not reflect the boundary, e.g., uniform finite element
meshes. Also, in each ηx, one can use a space Vx of arbitrary dimension
(depending on x). Vx could be space of polynomials or any other space of
functions depending on the local properties of the approximated function.

Choosing Vx to be the space of polynomials of low degree p (and using
{φx} that are reproducing of order k), we obtain the h-version of the FEM.
All other classical versions of the FEM – the p and h-p versions – are special
cases of the GFEM.

The GFEM, with special shape functions, was effectively used to solve
differential equations with rough coefficients and, more generally, in prob-
lems with micro-structures: see Babuška et al. (1994). Babuška and Osborn
(2000) showed that, for differential equations with rough coefficients, the
classical FEM can converge arbitrarily slowly. With the GFEM, in con-
trast, with appropriately chosen shape functions, an exponential rate of
convergence can be achieved: see Matache, Babuška and Schwab (2000).
The GFEM is a very powerful approach for solving problems with micro-
structures: see Strouboulis et al. (2001b) and Section 9. The GFEM can
also be advantageously used in linear and nonlinear crack propagation prob-
lems (Moes, Dolbow and Belytschko 1999, Wells and Sluis 2001, Wells, de
Borst and Sluis 2002), and problems with boundary layers (Duarte and
Babuška 2002).

7. Solutions of elliptic boundary value problems

In this section we will discuss the approximate solution of the model prob-
lem (2.1)–(2.2) (or (2.3)), introduced in Section 2, by a meshless method.
We will address the Neumann boundary condition (2.2) and the Dirichlet
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boundary condition (2.3) separately. These problems have the variational
formulation (2.4).

For 0 < h ≤ 1, we consider a family of particle-shape function systems

{Mh}0<h≤1 = {Xh, {hh
x, ωh

x , φh
x}x∈Xh}0<h≤1,

satisfying assumptions A1–A7 in Section 3.3 and (3.63). Recall that (3.63)
is trivially satisfied if the shape functions are reproducing of order k. The
family {Mh}0<h≤1 was introduced in Section 3.3; recall that

sup
x∈Xh

hh
x ≤ h.

We will be interested in assessing the approximation error as h ↓ 0.
Let u0 be the solution of (2.4), where Ω is a bounded domain with

Lipschitz-continuous boundary. In this section, we will sometimes assume
that the boundary of Ω is smooth. We will use the space V

k,q
Ω,h, defined

in (3.85), to approximate u0. It was shown in Theorem 3.11 that V
k,q
Ω,h is

(k + 1, q)-regular. Moreover, V
k,q
Ω,h satisfies the local assumption LA. Recall

that k is the order of the quasi-reproducing shape functions considered in
{Mh} and q is the smoothness index of these shape functions. The param-
eters k and q are in assumptions A1–A7 and we assume that q ≤ k + 1. We
also recall that V

k,q
Ω,h does not involve all the particles in Xh; it only involves

particles in the set

Ah
Ω = {x ∈ Xh : η̊h

x ∩ Ω 	= ∅}. (7.1)

Various classes of shape functions can be used for φh
x in the system {Mh}.

In Section 4, one such class of shape functions, namely RKP shape functions,
were discussed, and references related to other classes of shape functions used
in practice were provided.

We note that it is possible to construct particle-shape function systems
Mh, satisfying A1–A7, such that the set of particles Xh ⊂ Ω and the cor-
responding V

k,q
Ω,h have the desired approximation properties. We do not

consider such V
k,q
Ω,h in this section, and we will further remark on this issue

in the next subsection.
Let uS = uh ∈ V

k,q
Ω,h be the approximate solution defined by (2.7) with

S = V
k,q
Ω,h. Since V

k,q
Ω,h is (k + 1, q)-regular, we note that V

k,q
Ω,h ⊂ H = H1(Ω)

provided q ≥ 1. Thus uh is the solution of


uh ∈ V
k,q
Ω,h

B̃(u0, v) =
∫

Ω
fv dx, for all v ∈ V

k,q
Ω,h,

(7.2)



100 I. Babuška, U. Banerjee and J. E. Osborn

where the bilinear form B̃ is either B, given in (2.5), or a perturbation of B.
Clearly, uh is the solution of a Galerkin method. This Galerkin method is a
meshless method since the construction of the test and the trial space, i.e.,
V

k,q
Ω,h, does not require a mesh. As we remarked in Section 1, avoiding mesh

generation is one of the main features and advantages of meshless methods.
In this section, we will consider uh as an approximation of u0 and primarily

study the error u0−uh. We set some notation that will be used in this study
in the following sections. We define

Eh
x ≡ η̊h

x ∩ ∂Ω, x ∈ Ah
Ω, (7.3)

and

Ah
∂Ω = {x ∈ AΩ : Eh

x 	= ∅}. (7.4)

Thus Ah
∂Ω is the set of particles {x} such that η̊h

x has non-empty intersection
with ∂Ω.

7.1. A meshless method for Neumann boundary conditions

In this section we will address the approximation of solution u0 of (2.1) and
(2.2) by the meshless method. The analysis presented here is based on the
ideas and results in Babuška (1971) and Babuška and Aziz (1972). See also
the references listed in these articles.

The solution u0 of (2.1), (2.2) can be variationally characterized by (2.4),
which is 


u0 ∈ H1(Ω)

B(u0, v) =
∫

Ω
fv dx, for all v ∈ H1(Ω).

(7.5)

We wish to approximate u0 by uh, the solution of (7.2) with B̃ = B. For an
error estimate, from (2.8) we have

‖u0 − uh‖H1(Ω) ≤ inf
χ∈V

k,q
Ω,h

‖u0 − χ‖H1(Ω).

Suppose u0 ∈ H l(Ω). Then, since V
k,q
Ω,h is (k + 1, q)-regular and q ≥ 1, we

have

‖u0 − uh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω),

where µ = min(k, l − 1). We summarize this in the following theorem.

Theorem 7.1. Suppose u0 ∈ H l(Ω), with l ≥ 1, is the solution of (7.5),
where ∂Ω is Lipschitz-continuous. Let uh ∈ V

k,q
Ω,h, with q ≥ 1, be the
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approximate solution given by (7.2) with B̃ = B. Then

‖u0 − uh‖H1(Ω) ≤ hµ‖u0‖Hl(Ω), (7.6)

where

µ = min(k, l − 1). (7.7)

We note that the computation of uh, in Theorem 7.1, depends on the
definition of V

k,q
Ω,h and involves particles that are also outside Ω. In the liter-

ature, especially in the engineering literature, (t, k∗)-regular particle spaces
are constructed using particles inside Ω, but the support of some of the cor-
responding particle shape functions could be partly outside Ω. The apparent
reason for such construction is that the approximate solution is viewed as
an interpolant with respect to data inside Ω, and hence only the particles
that are inside Ω are considered. This is certainly not necessary.

The construction of the approximation space S (in (2.7)) using particles
only inside Ω may sometimes lead to better conditioning of the underlying
linear system. On the other hand, such construction is more expensive and
the approximations could show boundary layer behaviour (Babuška et al.
200x).

7.2. Meshless methods for Dirichlet boundary conditions

In this section we consider the approximation of the solution u0 of the Dirich-
let boundary value problem (2.1) and (2.3) by meshless methods. The vari-
ational characterization of u0 is given by


u0 ∈ H1

0 (Ω)

B(u0, v) =
∫

Ω
fv dx, for all v ∈ H1

0 (Ω).
(7.8)

The Galerkin method (2.7) to approximate u0 would require that the ap-
proximating space S be a subspace of H = H1

0 (Ω) and thus that the ap-
proximating functions satisfy the essential homogeneous Dirichlet boundary
condition. Unlike shape functions used in the FEM, the particle shape func-
tions φh

x (we consider h as the parameter), considered in Section 3.3, do
not in general satisfy the so-called ‘Kronecker delta’ property, i.e., φh

x(y) 	=
δx, y, x, y ∈ Xh. This is also true for translation-invariant particle shape
functions discussed in Section 3.2 (see Section 4.2). Thus it is difficult to
construct a subspace S ⊂ V

k,q
Ω,h such that S could be used in (2.7) as the

approximation space and the functions in S satisfy the Dirichlet boundary
condition.

In the literature, several meshless methods have been proposed to approx-
imate the solutions of Dirichlet boundary value problems. They are meshless
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methods in the sense that they use V
k,q
Ω,h as the approximating space. These

methods are:

(1) the penalty method,
(2) the Lagrange multiplier method,
(3) the Nitsche and related methods,
(4) the collocation method,
(5) combination of meshless and finite element methods,
(6) the characteristic function method.

In this section we will describe these methods. We note that the GFEM,
discussed in Section 6, uses an approximating space different from V

k,q
Ω,h, and

can also be used to approximate the solution of a Dirichlet boundary value
problem.

We will assume that the boundary ∂Ω of Ω is sufficiently smooth. The
smoothness assumption on the boundary simplifies the arguments presented
here, but various results could be obtained when the boundary is not smooth.

The penalty method
The main idea of the penalty method is to use a perturbed variational prin-
ciple. For σ > 0, we consider the bilinear form

B̃(u, v) ≡ Bσ(u, v) ≡ B(u, v) + h−σD(u, v), (7.9)

where

B(u, v) =
∫

Ω
(∇u · ∇v + uv) dx, (7.10)

D(u, v) =
∫

∂Ω
uv dx. (7.11)

We note that (7.10) is the bilinear form given in (2.5). We consider the
solution uh = uσ,h ∈ V

k,q
Ω,h of (7.2), namely

Bσ(uσ,h, v) =
∫

Ω
fv dx, for all v ∈ V

k,q
Ω,h. (7.12)

We note that uσ,h is uS , where uS is defined in (2.7). For v ∈ H1(Ω), let

Qσ(v) = B(v, v) + h−σD(v, v) − 2
∫

Ω
fv dx. (7.13)

It is well known that

Qσ(uσ,h) = min
v∈V

k,q
Ω,h

Qσ(v). (7.14)

We now present a convergence result for the penalty method.
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Theorem 7.2. Suppose u0 ∈ H l(Ω) ∩ H1
0 (Ω), l > 3/2, is the solution of

(7.8). Let uσ,h ∈ V
k,q
Ω,h be the solution of (7.12). Then, for any 0 < ε <

min(l − 3/2, 1/2), we have

‖u0 − uσ,h‖H1(Ω) ≤ C(ε)hµ‖u0‖Hl(Ω), (7.15)

where

µ = min
(

k, l − 1,
σ

2
, k +

1
2
− σ

2
− ε, l − 1

2
− σ

2
− ε

)
, (7.16)

and C(ε) depends on ε, but is independent of h and u0.

Proof. For any v ∈ H1(Ω), we define

Rσ(v) = B(u0 − v, u0 − v) + h−σD

(
∂u0

∂n
hσ + v,

∂u0

∂n
hσ + v

)
. (7.17)

Then, from Green’s theorem,

Rσ(v) = B(u0, u0) + B(v, v) − 2B(u0, v)

+ hσD

(
∂u0

∂n
,
∂u0

∂n

)
+ h−σD(v, v) + 2D

(
∂u0

∂n
, v

)

= B(u0, u0) + hσD

(
∂u0

∂n
,
∂u0

∂n

)

+ B(v, v) + h−σD(v, v) − 2
∫

Ω
fv dx

= B(u0, u0) + hσD

(
∂u0

∂n
,
∂u0

∂n

)
+ Qσ(v), for all v ∈ H1(Ω),

where Qσ(v) is given by (7.13). Therefore,

min
v∈V

k,q
Ω,h

Rσ(v) = B(u0, u0) + hσD

(
∂u0

∂n
,
∂u0

∂n

)
+ min

v∈V
k,q
Ω,h

Qσ(v),

and thus from (7.14) we get

Rσ(uσ,h) = min
v∈V

k,q
Ω,h

Rσ(v).

Hence, from (7.17) and the above relation, we have

‖u0 − uσ,h‖2
H1(Ω) = B(u0 − uσ,h, u0 − uσ,h)

≤ Rσ(uσ,h)

≤ Rσ(v), for all v ∈ V
k,q
Ω,h. (7.18)

Since V
k,q
Ω,h is (k + 1, q)-regular with q ≥ 1, there is a gh ∈ V

k,q
Ω,h such that

‖u0 − gh‖Hs(Ω) ≤ Chµ‖u0‖Hl(Ω), (7.19)



104 I. Babuška, U. Banerjee and J. E. Osborn

where µ = min(k+1−s, l−s) and 0 ≤ s ≤ 1. Now, from (7.17) with v = gh

and using the Schwartz inequality, we have

Rσ(gh) ≤ C

(
‖u0 − gh‖2

H1(Ω) + hσ

∫
∂Ω

(
∂u0

∂n

)2

ds + h−σ

∫
∂Ω

g2
h ds

)
. (7.20)

We will estimate the right-hand side of the above inequality. We first note
that u0 = 0 on ∂Ω. Let 0 < ε < min(l− 3

2 , 1
2). Then, using a trace inequality

and (7.19) with s = (1/2) + ε, we get

‖gh‖2
L2(∂Ω) = ‖u0 − gh‖2

L2(∂Ω) ≤ C(ε)‖u0 − gh‖2

H
1
2+ε(Ω)

≤ C(ε)h2µ1‖u0‖2
Hl(Ω), (7.21)

where µ1 = min(k + 1
2 − ε, l − 1

2 − ε). Also from a trace inequality, we have

‖∂u0

∂n
‖2

L2(∂Ω) ≤ C(ε)‖u0‖2

H
3
2+ε(Ω)

. (7.22)

Now using (7.21), (7.22), and (7.19), with s = 1, in (7.20), we get

Rσ(gh) ≤ C(ε)
(
h2 min(k,l−1) + hσ + h2µ1−σ

)
‖u0‖2

Hl(Ω)

≤ C(ε)h2µ‖u0‖2
Hl(Ω), (7.23)

where µ = min(k, l − 1, σ
2 , k + 1

2 − σ
2 − ε, l − 1

2 − σ
2 − ε). Finally, combining

(7.18) and (7.23) we get the desired result.

Remark 52. If we consider V
k,q
Ω,h in Theorem 7.2 such that k+1 ≥ l > 3/2,

then with σ = l − 1
2 − ε it is easy to see that (7.15) holds with

µ =
1
2

(
l − 1

2
− ε

)
.

Estimate (7.15) can be improved. We present the following result, based
on the analysis in Babuška (1970, 1971, 1972, 1973b), without proof.

Theorem 7.3. Suppose u0 ∈ H l(Ω) ∩ H1
0 (Ω) is the solution of (7.8). Let

uα,h ∈ V
k,q
Ω,h be the solution of (7.12). If k + 1 ≥ l ≥ 2, then, for any ε > 0,

we have
‖u0 − uα,h‖H1(Ω) ≤ C(ε)hµ−ε‖u0‖Hl(Ω), (7.24)

where C(ε) is independent of u0 and h but depends on ε, and µ is given by

µ = min
(

σ, l + σ − 2, l +
σ

2
− 3

2
,

k + 1 − κ

k
(l − 1)

)
, (7.25)

where

κ = max
(

1,
1 + σ

2

)
. (7.26)
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Remark 53. If σ ≥ 1 in Theorem 7.3, then l + σ − 2 ≥ l + σ
2 − 3

2 , and
therefore µ in (7.24) is given by

µ = min
(

σ, l +
σ

2
− 3

2
,
k + 1 − κ

k
(l − 1)

)
, (7.27)

where κ is as in (7.26).

Example. Consider l = 2 and σ = 1 in Theorem 7.3. Then, from (7.26),
we have κ = 1, and (7.27) yields µ = min(1, 1, 1) = 1. This is the optimal
rate of convergence. For higher values of l and k + 1 ≥ l, there is a loss in
the rate of convergence and we get a sub-optimal rate of convergence, i.e.,
µ < min(l − 1, k).

Thus, from Theorem 7.3 we conclude the following.

• It is advantageous to use V
k,q
Ω,h with higher values of k, since it leads to

higher accuracy. For example, if l = 4 and σ = 3, then κ = 2 and (7.27)
yields µ = 3(k−1

k ). Thus higher values of k will increase accuracy. But
higher values of k reduce the sparsity of the resulting linear system.

• Too small or too large a value of σ may decrease the accuracy signif-
icantly. For example, if σ = 2k + 1 then κ = k + 1, and (7.27) yields
µ = 0.

The use of penalty methods was recently suggested in the literature, e.g.,
Atluri and Shen (2002), Liu (2002) and Zhu and Atluri (1998), without any
theoretical analysis. An empirical penalty value of σ, unrelated to l or k,
was suggested in Zhu and Atluri (1998).

The Lagrange multiplier method
The theory of Lagrange multiplier methods, in the context of finite element
methods, was developed in Babuška (1973a) (see also Babuška and Aziz
(1972)). This theory can also be extended to meshless methods.

It is known (cf. Babuška and Aziz (1972)) that the effectiveness of this
method depends on a delicate relationship between the approximating space
St,k∗

h (Ω) and the space of Lagrange multipliers St,k∗

h1
(∂Ω), where both St,k∗

h (Ω)
and St,k∗

h1
(∂Ω) satisfy an inverse assumption. In the context of meshless

methods, we let the approximating space to be the particle space V
k,q
Ω,h. We

know that V
k,q
Ω,h is (k + 1, q)-regular, and satisfies the inverse assumption,

IA, under additional hypotheses given at the end of Section 3.3. The space
of Lagrange multipliers Sk+1,q

h1
(∂Ω) has the same (t, k∗)-regularity as the

approximating space, and the functions in Sk+1,q
h1

(∂Ω) are defined only on
∂Ω with respect to particles on ∂Ω. Thus, ∂Ω must contain enough particles.
We note that the functions in Sk+1,q

h1
(∂Ω) are not restrictions of functions in
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V
k,q
Ω,h on ∂Ω. Then, following the analysis in Babuška (1973a) and Babuška

and Aziz (1972), one can show that, if the size of the supports of the basis
elements of Sk+1,q

h1
(∂Ω) is of the same order as |Eh

x |, x ∈ Ah
∂Ω (Eh

x and
Ah

∂Ω defined in (7.3) and (7.4), respectively), then the approximate solution
obtained from the Lagrange multiplier method converges. If the size of the
supports of the basis elements of Sk+1,q

h1
(∂Ω) is smaller than ηh

x , x ∈ Ah
∂Ω,

then the method is unstable. This relationship was further analysed in
Pitkäranta (1979, 1980).

The Lagrange multiplier technique leads to the optimal rate of conver-
gence in comparison to the penalty method, where the optimal rate of con-
vergence is usually not attained. But, as we mentioned before, the sufficient
conditions for convergence are quite delicate.

Recently, the Lagrange multiplier technique was applied in the context of
meshless methods without any theoretical analysis, in Belytschko, Lu and
Gu (1994), Liu (2002), Lu, Belytschko and Gu (1994) and Mukherjee and
Mukherjee (1997).

The Nitsche and related methods
Because of the delicate nature of Lagrange multiplier methods, there has
been some interest in looking for other methods to deal with the issue of the
imposition of Dirichlet boundary conditions, and to avoid complications that
are present in Lagrange multiplier methods. To that end, certain methods
were proposed in Barbara and Hughes (1991) and Stenberg (1995). But a
similar method was proposed much earlier by Nitsche (1970–1971). We will
discuss the Nitsche method, following the presentation in Stenberg (1995).
We will still assume that ∂Ω is smooth.

To approximate the solution u0 of (7.8) by the Nitsche method, we con-
sider the particle space V

k,q
Ω,h with q ≥ 2. We also assume that:

• card (Ah
∂Ω) ≤ κ and

C1h ≤ hEh
x
≤ C2h, x ∈ Ah

∂Ω, (7.28)

where hEh
x
≡ |Eh

x |, for x ∈ Ah
∂Ω (Eh

x and Ah
∂Ω are defined in (7.3) and

(7.4), respectively);

• there exists 0 < K < ∞, K = K(Xh), such that∥∥∥∥∂v

∂n

∥∥∥∥
− 1

2
,h

≤ K[B(v, v)]1/2, for all v ∈ V
k,q
Ω,h, (7.29)

where B(u, v) was defined in (7.10) and∥∥∥∥∂v

∂n

∥∥∥∥
2

− 1
2
,h

=
∑

x∈Ah
∂Ω

hEh
x

∥∥∥∥∂v

∂n

∥∥∥∥
2

H0(Eh
x )

. (7.30)
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We define the bilinear form B̃(u, v) = Bγ(u, v), where

Bγ(u, v) = B(u, v) − D

(
∂u

∂n
, v

)
− D

(
∂v

∂n
, u

)
+ γ

∑
x∈Ah

∂Ω

hEh
x

−1

∫
Eh

x

uv ds,

with γ > 0; B(u, v), D(u, v) are as defined in (7.10), (7.11), respectively.
The approximate solution uh,γ ∈ V

k,q
Ω,h, obtained from the Nitsche method,

is given by

Bγ(uh,γ , v) =
∫

Ω
fv dx, for all v ∈ V

k,q
Ω,h. (7.31)

For u ∈ H2(Ω), we define the norm

|||u|||2 = B(u, u) +
∥∥∥∥∂u

∂n

∥∥∥∥
2

− 1
2
,h

+ ‖u‖2
1
2
,h

,

where

‖u‖2
1
2
,h

=
∑

x∈Ah
∂Ω

hEh
x

−1‖u‖2
H0(Eh

x ),

and ‖∂u
∂n‖2

− 1
2
,h

is given by (7.30) with v replaced by u. We first note that,
from the Schwartz inequality, we have

∑
x∈Ah

∂Ω

h−1
Eh

x

∫
Eh

x

uv ds ≤
∑

x∈Ah
∂Ω

(∫
Eh

x

h−1
Eh

x
u2 ds

)1/2(∫
Eh

x

h−1
Eh

x
v2 ds

)1/2

≤


 ∑

x∈Ah
∂Ω

h−1
Eh

x
‖u‖2

H0(Eh
x )




1/2 
 ∑

x∈Ah
∂Ω

h−1
Eh

x
‖v‖2

H0(Eh
x )




1/2

= ‖u‖ 1
2
,h‖v‖ 1

2
,h. (7.32)

Also,

D

(
u,

∂v

∂n

)
≤
∑

x∈Ah
∂Ω

∫
Eh

x

∣∣∣∣h−1/2

Eh
x

u h
1/2

Eh
x

∂v

∂n

∣∣∣∣ ds

≤
∑

x∈Ah
∂Ω

h
−1/2

Eh
x

‖u‖H0(Eh
x )h

1/2

Eh
x

∥∥∥∥∂v

∂n

∥∥∥∥
H0(Eh

x )

≤ ‖u‖ 1
2
,h

∥∥∥∥∂v

∂n

∥∥∥∥
− 1

2
,h

. (7.33)
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Using the same arguments used to obtain (7.33), we get

D

(
∂u

∂n
, v

)
≤
∥∥∥∥∂u

∂n

∥∥∥∥
− 1

2
,h

‖v‖ 1
2
,h. (7.34)

Now, using (7.32)–(7.34), it can easily be shown that

Bγ(u, v) ≤ (1 + γ) |||u||| |||v|||. (7.35)

We now show that, for a proper value of γ, the bilinear form Bγ(u, v) is
coercive.

Lemma 7.4. Suppose K2 < γ, where K satisfies (7.29). Then,

Bγ(v, v) ≥ C∗
1 |||v|||2, for all v ∈ V

k,q
Ω,h, (7.36)

where C∗ = C∗(Xh) > 0.

Proof. Let v ∈ V
k,q
Ω,h, and choose any ε > 0. From the definition of Bγ(u, v)

and (7.33) with u = v, we have

Bγ(v, v) = B(v, v) − 2D

(
v,

∂v

∂n

)
+ γ‖v‖2

1
2
,h

≥ B(v, v) − 2‖v‖ 1
2
,h

∥∥∥∥∂v

∂n

∥∥∥∥
− 1

2
,h

+ γ‖v‖2
1
2
,h

≥ B(v, v) − ε‖v‖2
1
2
,h
− 1

ε

∥∥∥∥∂v

∂n

∥∥∥∥
2

− 1
2
,h

+ γ‖v‖2
1
2
,h

= B(v, v) − 1
ε

∥∥∥∥∂v

∂n

∥∥∥∥
2

− 1
2
,h

+ (γ − ε)‖v‖2
1
2
,h

≥
(

1 − K2

ε

)
B(v, v) + (γ − ε)‖v‖2

1
2
,h

.

Therefore, considering ε = 1
2(K2 + γ) in the above inequality, we get

Bγ(v, v) ≥ C1[B(v, v) + ‖v‖2
1
2
,h

], (7.37)

where C1 = min
(γ−K2

γ+K2 , γ−K2

2

)
. Now, from the definition of ||| · ||| and using

(7.29), we get

|||v|||2 ≤ B(v, v) + K2B(v, v) + ‖v‖2
1
2
,h

≤ (1 + K2)[B(v, v) + ‖v‖2
1
2
,h

].
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Thus, combining the above inequality with (7.37), we get

Bγ(v, v) ≥ C∗|||v|||2,

where C∗ = 1
1+K2 min(γ−K2

γ+K2 , γ−K2

2 ), which is (7.36).

We now present the following result.

Theorem 7.5. Suppose u0 ∈ H l(Ω), for l ≥ 2, is the solution of (7.8). Let
uh,γ ∈ V

k,q
Ω,h, with q ≥ 2, be the solution of (7.31), where V

k,q
Ω,h satisfies (7.28)

and (7.29). Then

‖u0 − uh,γ‖H1(Ω) ≤
C(1 + γ)
C∗(Xν)

hµ‖u0‖Hl(Ω), µ = min(k, l − 1), (7.38)

where C∗(Xν) is as in (7.36).

Proof. It is easy to see that

Bγ(u0, v) =
∫

Ω
fv dx, for all v ∈ H1(Ω),

and therefore,

Bγ(u0 − uh,γ , v) = 0, for all v ∈ V
k,q
Ω,h. (7.39)

Now, for any gh ∈ V
k,q
Ω,h, using (7.36), (7.39) and (7.35), we have

|||gh − uh,γ |||2 ≤ 1
C∗ B̂γ(gh − ûh,γ , gh − uh,γ)

≤ 1
C∗ B̂γ(gh − u0, gh − uh,γ)

≤ (1 + γ)
C∗ |||u0 − gh||| |||gh − uh,γ |||,

and hence

|||gh − uh,γ ||| ≤
(1 + γ)

C∗ |||u0 − gh|||.

Therefore,

|||u0 − uh,γ ||| ≤ |||u0 − gh||| + |||gh − uh,γ |||
≤ C|||u0 − gh|||, for all g ∈ V

k,q
Ω,h. (7.40)

Now, using (7.28) and a trace inequality, we have

‖u0 − gh‖2
1
2
,h

=
∑

x∈Ah
∂Ω

h−1
Eh

x
‖u0 − gh‖2

H0(Eh
x )

≤ Ch−1‖u0 − gh‖2
H0(∂Ω)
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≤ Ch−1

(
1
h
‖u0 − gh‖2

H0(Ω) + h‖u0 − gh‖2
H1(Ω)

)

= C
(
h−2‖u0 − gh‖2

H0(Ω) + ‖u0 − gh‖2
H1(Ω)

)
, (7.41)

where C depends on κ. Also, using a similar argument, we have∥∥∥∥∂(u0 − gh)
∂n

∥∥∥∥
2

− 1
2
,h

≤ C
(
h2‖u0 − gh‖2

H2(Ω) + ‖u0 − gh‖2
H1(Ω)

)
. (7.42)

where C depends on κ. Thus from (7.41) and (7.42) we get

|||u0 − gh|||2 = ‖u0 − gh‖2
H1(Ω) +

∥∥∥∥∂(u0 − gh)
∂n

∥∥∥∥
2

− 1
2
,h

+ ‖u0 − gh‖2
1
2
,h

≤ Ch−2
2∑

j=0

h2j‖u0 − gh‖2
Hj(Ω),

and hence, from the definition of ||| · ||| and (7.40), we have

‖u0 − ûh,γ‖H1(Ω) ≤ |||u0 − ûh,γ ||| (7.43)

≤ Ch−1
2∑

j=0

hj‖u0 − gh‖Hj(Ω), for all gh ∈ V
k,q
Ω,h.

Finally, we choose g ∈ V
k,q
Ω,h such that

‖u0 − g‖Hs(Ω) ≤ Chµ1−s‖u0‖Hl(Ω), 0 ≤ s ≤ 2,

where µ1 = min(k + 1, l). Using this in (7.43) we get the desired result.

We now discuss situations where the assumption required to prove Theo-
rem 7.5 is valid. The major problem is to estimate K(Xh) given in (7.29).
We would like to have K(Xh) ≤ C, uniformly for all 0 < h ≤ 1. If the
supports ηh

x of the particle function φh
x are ‘reasonable’, e.g., in R

2 or in R
3,

then it is easy to see that the necessary condition for K(Xh) ≤ C is that
hEh

x
≥ α|ηh

x | for x ∈ Ah
∂Ω. This can be enforced by properly selecting the

set of particles Xh. This aspect can also affect the design of adaptive mesh-
less (Nitsche) methods. Since the estimates of these constants are difficult
to estimate accurately, we may select larger values of γ in (7.31) so that
Theorem 7.5 is valid.

The Nitsche method presented here is superior to both the penalty method
and Lagrange multiplier methods. The Nitsche method, in the framework of
meshless methods, was addressed in Babuška et al. (2002a) and implemented
in Schweitzer (200x) and Griebel and Schweitzer (2002e).
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The collocation method
The collocation method, in the framework of meshless methods, was re-
cently proposed in Atluri and Shen (2002), Zhu and Atluri (1998) and Ha-
gen (1996). The method consists of adding constraint equation, at certain
points of the boundary ∂Ω, to the stiffness matrix. No analysis was presented
to address the convergence of the approximate solution obtained from this
method. Collocation using radial basis functions was analysed in Franke
and Schaback (1998).

Combination of meshless methods and the finite element method
This method was proposed, e.g., in Krongauz and Belytschko (1996). The
main idea in this approach is to use classical finite elements (which could
also be interpreted as particle functions) in a neighbourhood of the boundary
∂Ω, and to select other particle functions such that their supports do not
intersect ∂Ω.

The characteristic function method
The method was proposed in connection to the Ritz method when the ap-
proximating functions were global polynomials (see Mikhlin (1971) and Kan-
torovich and Krylov (1958)). If a domain Ω has a smooth boundary ∂Ω,
there exists a smooth function Φ such that

Φ(x) > 0, x ∈ Ω,

Φ(x) = 0, x ∈ ∂Ω,

and |∇Φ(x)| ≥ α > 0, x ∈ ∂Ω.

Let SΦ
h = {u : u = Φv, v ∈ V

k,q
Ω,h}. Then it is obvious that SΦ

h ⊂ H1
0 (Ω).

We approximate the solution u0 of (2.1) and (2.3) by uh ∈ SΦ
h , where uh is

the solution uS of (2.7) with S = SΦ
h .

For u0 ∈ H l(Ω) ∩ H1
0 (Ω), l ≥ 2, we define w0 = u0

Φ . Then, using Hardy’s
inequality (Theorem 329 of Hardy, Littlewood and Polya (1952)), one can
show that w0 ∈ H l−1(Ω). Using this result, we obtain the following theorem.

Theorem 7.6. Suppose u0 ∈ H l(Ω) ∩ H1
0 (Ω), and suppose l ≥ 2. Then

there exists wh ∈ V
k,q
Ω,h such that gh = Φwh satisfies

‖u0 − gh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω), µ = min(k, l − 2). (7.44)

Proof. Recall that V
k,q
Ω,h is (k + 1, q)-regular with q ≥ 1. Then there exists

wh ∈ V
k,q
Ω,h such that

‖w0 − wh‖H1(Ω) ≤ Chµ‖w0‖Hl−1(Ω) ≤ Chµ‖u0‖Hl(Ω), (7.45)

where µ = min(k, l − 2). Now, from the definition of w0, we have

u0 − Φwh = u0 − Φw0 + Φ(w0 − wh) = Φ(w0 − wh),
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and hence, using (7.45), we have

‖u0 − Φwh‖H1(Ω) ≤ C‖w0 − wh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω), µ = min(k, l − 2),

which is the desired result.

Remark 54. It is clear from (2.8) and (7.44) that, for l ≥ 2,

‖u0 − uh‖H1(Ω) ≤ Chµ‖u0‖Hl(Ω), µ = min(k, l − 2).

We further note that this order of convergence cannot, in general, be im-
proved.

The generalized finite element method
We note that all the methods described so far primarily use V

k,q
Ω,h as the

approximating space. The GFEM, on the other hand, uses different approx-
imating spaces, as we have seen in Section 6. The use of these approximating
spaces makes the GFEM extremely flexible.

We recall that in the GFEM we start with a partition of unity with respect
to a simple mesh that need not conform to the boundary of the domain. This
partition unity could be the particle shape functions defined in Section 3.
Then ‘handbook’ functions are used as local approximating spaces. The
Dirichlet boundary condition can be implemented by choosing the local ap-
proximation space Vx, for x ∈ Ah

∂Ω, such that the functions in Vx satisfy the
Dirichlet boundary conditions.

We have presented a few approaches on how to use meshless approxima-
tion to approximate solutions of PDEs. To impose Dirichlet boundary con-
ditions on meshless approximation is a challenge, and we looked into some
methods that can overcome this difficulty. While discussing these methods,
we assumed that the boundary of the domain is smooth, for simplicity. But
the results presented here can be generalized to cover nonsmooth boundaries,
especially piecewise smooth boundaries.

Some methods were implemented and reported in the literature, but
lacked rigorous theoretical analysis. All the methods reported here have
certain advantages as well as disadvantages. If the particle space V

k,q
Ω,h is

used as an approximating space, then in our opinion the Nitsche method is
very promising, because it is relatively robust and easy to implement. But
we note that V

k,q
Ω,h is difficult to construct for higher values of k, and the

use of V
k,q
Ω,h with lower values of k reduces the accuracy of the method. On

the other hand, the GFEM uses a partition of unity (the basis functions of
V

k,q
Ω,h with k = 0), which is easy to construct, and higher accuracy can be

attained by using suitable local approximation spaces.
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8. Implementational aspects of meshless methods

In this section, we will briefly discuss the implementational aspects of mesh-
less methods and the GFEM. As for the finite element method, the imple-
mentation of meshless methods and the GFEM has four major parts:

(1) construction of particle shape functions,
(2) construction of the stiffness matrix,
(3) solution of the linear system of equations,
(4) a posteriori error estimation, adaptivity, and computation of data of

interest.

We now discuss these items in turn.

Construction of particle shape functions
In the classical finite element method, we start with a mesh that is related to
the domain, and then shape functions are defined with respect to the chosen
mesh. In a meshless method, we start with particles {x}. Corresponding
to each particle x, a particle shape function with compact support ηx is
constructed, such that the {η̊x} form an open cover of the domain Ω. The
construction of shape functions that are reproducing of order k = 0 or 1 is
not difficult. For k = 0, one may use Shepard’s approach (Shepard 1968)
as described in Section 4.1. For k = 1 and for an appropriate particle dis-
tribution, one may first construct a mesh using tetrahedra such that the
particles are the nodes of the mesh (i.e., the vertices of the tetrahedra).
This procedure is not difficult, as there are efficient codes available for con-
structing such a mesh. The shape function corresponding to the particle x
can be taken to be the standard hat functions, whose support is the union
of all the simplices with x as one of its vertices. We note, however, that, for
k = 1, smoother shape functions can also be constructed (see Han and Meng
(2001)). For k = 0, 1, we have to check that card(Sx) ≤ κ, κ is independent
of x, where Sx = {y : ηy ∩ ηx 	= ∅}. For the Nitsche method, described in
Section 7.2, we also have to check that K, defined in (7.29), is bounded. The
construction of particle shape functions for k ≥ 2 is more expensive than
for k = 0, 1, and it may be more difficult to check assumptions A1–A7 and
(3.63), which ensure convergence.

In contrast, the GFEM uses only a partition of unity, and thus particle
shape functions with k = 0, 1, described in the last paragraph, can be used
for this purpose. Also, a simple regular distribution of particles could be
used to construct the partition of unity. The space of local shape functions,
Vx, could be created analytically or through ‘handbook’ solutions. Dirichlet
boundary conditions are also treated by appropriate selection of Vx, and
hence we do not have to use special methods, e.g., the penalty method, the
Nitsche method, etc., which simplifies the implementation.
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Construction of the stiffness matrix
The construction of the stiffness matrix for a meshless method is laborious
and delicate. In fact, this is where we pay the price for avoiding mesh gen-
eration. The elements of the resulting stiffness matrix are integrals, which
have to be numerically evaluated over various regions. These regions are
not simple tetrahedra as in the finite element method, where they naturally
come from a mesh. These regions, for a meshless method, are of the form
ηx∩ηy∩Ω, x, y ∈ Xν , and can be extremely complicated. Also, the integrals
have to be evaluated accurately, as it is known that inaccurate numerical
integration leads to very poor results (see, for example, Chen, Wu, Yoon
and You (2001)). A special numerical integration scheme is given in De
and Bathe (2001), where the {ηx} are balls and the region of integration is
the intersection of two balls. The problem of effective integration has also
been addressed in Dolbow and Belytschko (1999), Griebel and Schweitzer
(2002b), Schweitzer (200x) and Strouboulis et al. (2001a, 2001b). The nu-
merical integration poses additional problems in the GFEM when singular
functions are included in the local approximating space Vx. Standard inte-
gration schemes in this situation yield poor accuracy. This problem in the
GFEM was handled in Strouboulis et al. (2001a) by using adaptive numeri-
cal integration. Because of this sensitivity to numerical integration, the use
of adaptive integration is preferred in GFEMs.

Thus we see that an accurate and effective numerical integration scheme to
approximate the elements of the stiffness matrix is essential for the success
of meshless methods. We will remark further on this issue in the next
subsection. We note that numerical integration and construction of stiffness
matrices in these methods are parallelizable.

Solution of the linear system
The exact stiffness matrix (without numerical integration) obtained from
a meshless method could be positive definite with a large condition num-
ber. This is caused by using shape functions with large overlap between
their supports, which makes the shape functions ‘almost’ linearly depen-
dent. Moreover, the exact stiffness matrix obtained from the GFEM could
be positive semi-definite, as shown in Strouboulis et al. (2001a). But the
underlying linear system obtained from the GFEM is always consistent, i.e.,
the linear system has non-unique solutions. The lack of unique solvability
of the linear system does not imply that the GFEM produces non-unique
solutions. In fact, if the vector {cx,j}1≤j≤nx , with dim Vx = nx, is a solution
of this linear system, then the solution

uh =
∑

x

nx∑
j=1

φx cx,j ψj
x,

obtained from the GFEM, where ψj
x is a basis of Vx, is unique.
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We have already mentioned the importance of numerical integration in
evaluating the elements of the stiffness matrix obtained from a meshless
method. We further note that the elements of the load vector is also eval-
uated by numerical integration. To obtain a consistent linear system (after
the use of numerical integration), the numerical integration scheme applied
to compute an element of the load vector should be same as the scheme used
to compute the corresponding row of the stiffness matrix.

To find the solution of the linear system obtained from a meshless method
(or from the GFEM), one can use a special direct solver based on elimination
or an iterative solver. Strouboulis et al. (2001a) used direct solvers, e.g.,
subroutines MA27 and MA47 of the Harwell Subroutine Library, to solve
the sparse positive semi-definite linear system obtained from the GFEM.
The use of these solvers was successful even when the nullity of the stiffness
matrix was large. It was also shown in Strouboulis et al. (2001a) that round-
off errors did not play a significant role in solving the linear system, i.e., the
round-off error was almost the same as when the standard finite element
linear system is solved by the elimination method.

An iterative algorithm for solving such linear systems was given in Strou-
boulis et al. (2001a). The idea of this algorithm, which has been used in
many situations, is to perturb the stiffness matrix by adding a small multiple
of the identity matrix. The perturbed matrix, say P , is positive definite and
any solver could be used to solve Px = b. Using this fact and a few iterations
of a simple iterative technique, a solution of the original linear system could
be obtained. We refer to Strouboulis et al. (2001a) for a complete description
of the effectiveness of this iterative algorithm.

We have noted before that the linear system obtained from the meshless
method is consistent even if the stiffness matrix is positive semi-definite. In
this situation, a solver based on conjugate gradient methods can also be
used. The convergence in this situation is similar to the convergence of con-
jugate gradient methods when applied to solve the linear system obtained
from the standard finite element method. The multigrid method is not di-
rectly applicable to the linear system when the stiffness matrix is positive
semi-definite, since the eigenfunction corresponding to the zero eigenvalue of
the stiffness matrix is global and oscillatory. The same is also true when the
stiffness matrix is ‘almost’ singular. However, a special version of the multi-
grid method was proposed in Schweitzer (200x) and Griebel and Schweitzer
(2002c), when the underlying partition of unity is reproducing of order k = 0.
For another multigrid method, see Xu and Zikatanov (2002).

A posteriori error estimation, adaptivity and programming
The rigorous theory of a posteriori error estimation originated in Babuška
and Melenk (1997) and other estimates, based on various averaging, were
also used. These estimators can be used as error indicators for adaptivity
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purposes. For adaptive approaches in meshless methods, we refer readers to
Schweitzer (200x) and Belytschko, Liu and Singer (1998b).

We finally mention that programming the meshless method is an impor-
tant issue and it requires specific concepts. For this aspect of the meshless
method, we refer to Dolbow and Belytschko (1998), Griebel and Schweitzer
(2002d), and Strouboulis et al. (2001a, 2001b).

9. Examples

Meshless methods have been applied to linear and nonlinear elliptic prob-
lems, as well as to problems related to other differential equations: we refer
to Li and Liu (2002). However, it is essential to characterize the types of
problems where this method is, or could be, superior to standard methods
(Belytschko, Gerlach, Krongauz, Krysl and Dolbow 1998a).

In this paper, we address only the application of the meshless method on
a class of linear, elliptic problems. As stated in the Introduction, one of
the main advantages of meshless methods is that it avoids mesh generation.
This is essential when the domain is complex. Another advantage of this
method is that it allows the use of various ‘special’ local shape functions to
improve the accuracy.

The generalized finite element method (GFEM) was discussed in detail
by Strouboulis et al. (2001b), and it was shown that the method is effective.
Three types of meshes with successive refinements were used in that paper,
and we present one of these meshes in Figure 9.1. This is a simple finite el-
ement mesh and it does not reflect the geometry of the underlying domain.
Then, using the linear finite elements as a partition of unity, and special
functions for local approximation, an improvement in the rate of convergence
was achieved. Detailed numerical data, with comments on various aspects
of the method, for instance numerical integration, etc., were presented in

Figure 9.1. A mesh used in Strouboulis et al. (2001b) for the
construction of a partition of unity in the context of the GFEM
to solve a problem posed on the domain.



Survey of meshless and generalized finite element methods 117

Strouboulis et al. (2001b). We note, however, that although the domain
considered in this example (i.e., the domain in Figure 9.1) was simple, and
classical finite element methods with mesh refinement or an adaptive proce-
dure could have been used, the analysis and data presented in Strouboulis
et al. (2001b) clearly show the scope and potential of the GFEM.

As mentioned above, the power of the GFEM lies in handling problems
where the underlying domain has complex geometry. Three types of complex
domain, shown in Figure 9.2, were analysed by the GFEM in Strouboulis
et al. (2001b). Another complex domain with fibres, analysed in the same
paper, is shown in Figure 9.3, where the fibre distribution was taken from
Babuška, Andersson, Smith and Levin (1999). To construct finite element
meshes for these domains is very complex and nearly impossible. ‘Handbook’
problems that characterize the local behaviour of the approximated solution
(e.g., in the neighbourhood of a crack, fibres, etc.) were used to construct
special shape functions for these problems.

The GFEM has an advantage in dealing with problems with singularities
(in the neighbourhood of geometric edges) in three dimensions. When the
basic finite element tetrahedral mesh is used in such problems, it is well
known that classical edge refinement is cumbersome. This problem was
handled using the GFEM in Duarte, Babuška and Oden (2000), where a
refinement by special functions, at positions indicated by an error indicator,
was performed. The GFEM was also used to handle difficulties stemming
from orthotropic problems in Duarte and Babuška (2002).

There are other types of problem where the GFEM is quite effective. They
include multisite problems, where many crack configurations are present,
and crack propagation problems, where the geometry of the domain changes.
The GFEM could be used in such problems by considering local approxi-
mating spaces consisting of functions that are discontinuous over the cracks,
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Figure 9.2. The three types of domain analysed by the GFEM
in Strouboulis et al. (2001b).
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Figure 9.3. The problem of fibre composite
type analysed in Strouboulis et al. (2001b).

and including a singular function with respect to the tip of the crack into the
local approximating space. Then the propagation of the crack is computed
(using stress intensity factors); the old singular function in the approximat-
ing space is replaced by a new singular function, new discontinuous functions
are added in the same space, and the process of computing the propagation
of crack and changing the local approximation spaces is repeated. In this
process, the matrix of the underlying linear system at a particular step can
be obtained by augmenting the matrix corresponding to the previous step
with new rows and columns, and it is possible to solve the new linear sys-
tem using the Schur complement, which uses the previously computed data.
This general idea was used in Li and Liu (2002) and Moes, Gravouil and
Belytschko (2002) without using the previously computed data.

The GFEM is an important tool in approximating solutions of elliptic
problems with rough coefficients as well as homogenization problems. We
mention that the usual finite element method may give extremely poor re-
sults when applied to elliptic problems with rough coefficients, as shown in
Babuška and Osborn (2000). It was shown in Babuška et al. (1994), using
a detailed analysis, that the GFEM leads to the same rate of convergence
for problems with rough coefficients as when the coefficients are smooth.
The GFEM is also related to upscaling (Arbogast 2000) and stabilization
(Hughes 1995).

We emphasize that in this paper we have considered only a small (but
important) family of problems. We have shown that the use of meshless
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methods, particularly the use of the GFEM, on these problems is advan-
tageous in comparison to the standard finite element method. Of course,
there are other types of problems, especially nonlinear problems, which we
have not addressed in this paper.

10. Future challenges

We have addressed some mathematical problems concerning meshless meth-
ods. This method is, in fact, a family of approaches that sometimes differ in
implementational details, and are referred to by a variety of names. Partic-
ular forms of meshless methods are used for solving important engineering
problems in solid and fluid mechanics – linear and nonlinear, stationary and
time-dependent problems, with fixed and changing boundary conditions, for
differential and integral equations of various types. There is a rapidly grow-
ing literature on the subject, which is mainly directed towards engineering
and focuses on particular problems, whose mathematical and theoretical as-
pects are not completely understood. For a description of the state of the
art we refer to Atluri and Shen (2002), Babuška et al. (2002a), Griebel and
Schweitzer, eds (2002a), Li and Liu (2002), G. R. Liu (2002) and Zhang,
Liu, Li, Qian and Hao (2002).

We presented basic approximation results in L2-based spaces, and dis-
cussed their use in the approximate solution of linear elliptic boundary value
problems. The approximation theory we developed is applicable to virtu-
ally all variationally formulated problems, provided that the stability of the
variational method is guaranteed (the inf-sup condition, sometimes called
the BB condition, is satisfied). In contrast to coercive problems, proving
stability for non-coercive problems is a delicate issue.

Meshless methods, in particular the GFEM, permit the use of non-poly-
nomial and non-smooth shape functions with a certain special character.
This feature was successfully utilized in solving partial differential equa-
tions with rough coefficients and, more generally, in problems with micro-
structures. The GFEM can be directly related to upscaling and to stabi-
lization. Special shape functions related to the oscillatory behaviour of the
solutions, as in the case of the Helmholtz equation, have been successfully
used. The GFEM was used in problems in which the discontinuities prop-
agate, as in linear and nonlinear crack problems. Meshless methods and
GFEM can be used for solving higher-order differential equations because
it is possible to construct shape functions with high regularity. There are,
of course, many remaining issues to be addressed: we mention, in particu-
lar, the challenging problems of adaptive selection of shape functions and of
proving a posteriori error estimates.

Meshless methods and the GFEM are generalizations of the classical FEM,
in its h, p and hp versions. Hence all the theoretical and implementational
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problems for the h, p and hp versions of the FEM have analogues for meshless
methods; and there are additional problems, having special features, with
meshless methods.

Today, many versions of meshless methods, based on various discretization
principles, for example, variational principles, collocation, etc., are used in
an ad hoc way, with emphasis on constructive results. Thus it is important
to create an effective framework in which to study these methods, and to
assess their effectiveness.
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I. Babuška (1973b), ‘The finite element method with penalty’, Math. Comp.
27, 221–228.
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I. Babuška and A. K. Aziz (1972), Survey lectures on the mathematical foundations
of the finite element method, in Mathematical Foundations of the Finite Ele-
ment Method with Applications to Partial Differential Equations (A. K. Aziz,
ed.), Academic Press, pp. 3–345.



Survey of meshless and generalized finite element methods 121
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I. Babuška and T. Strouboulis (2001), The Finite Element Method and its Relia-
bility, Clarendon Press, Oxford.
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A. M. Matache, I. Babuška and C. Schwab (2000), ‘Generalized p-FEM in homog-
enization’, Numer. Math. 86, 319–375.

D. H. McLain (1974), ‘Drawing contours from arbitrary data points’, Comp. J.
17, 89–97.
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