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Abstract

In this paper, we explore the effect of numerical integration on the
meshless method used to approximate the solution of an elliptic partial dif-
ferential equation with non-constant coefficients with Neumann boundary
conditions. We considered meshless methods with shape functions that
reproduce polynomials of degree k ≥ 1. We have obtained an estimate for
the energy norm of the error in the approximate solution from the mesh-
less method under the presence of numerical integration. This result was
established under the assumption that the numerical integration rule sat-
isfied a certain discrete Green’s formula, which is not problem dependent,
i.e., does not depend on the non-constant coefficients of the problem. We
have also derived numerical integration rules in two dimensions satisfying
the discrete Green’s formula.

Keywords: PDE with non-constant coefficients, Galerkin methods, mesh-
less methods, quadrature, numerical integration, error estimates

1 Introduction

Since last 20 years, a lot of progress has been made in the development of the
Meshless Method (MM), and it has been applied to solve complicated engineer-
ing problems (see e.g., [1, 2, 3, 8, 19, 22, 25]). The implementation of MM does
not require a mesh, but unlike standard the Finite Element Method (FEM), the
shape functions used in the MM are not piecewise polynomials. This feature of
the shape functions poses a serious challenge in the use of numerical integration
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to compute the elements of the stiffness matrix, the mass matrix, and the load
vector.

From the very beginning of the development of the MM, it has been rec-
ognized that numerical integration is a serious issue in MM and has been ad-
dressed in various engineering papers [9, 18, 20, 7, 13, 14, 5, 16, 17, 11, 12].
Several approaches to implement numerical integration have been proposed in
the literature; we refer to Section 3 of [6] for a brief review of these approaches.
A mathematical analysis of the effect of numerical integration was first reported
in [5], where is was shown that the approximate solution obtained from the MM,
using standard numerical integration, may not converge. It was also shown that
if the stiffness matrix (numerically computed with quadrature) satisfies a row
sum condition then the error in the approximate solution (in energy norm) is
O(h+η), where h is the discretization parameter and the parameter η indicates
the accuracy of the underlying numerical integration. Thus with η = O(h), the
MM with numerical integration yields the optimal order of convergence. How-
ever, the analysis presented in [5] was restricted to the shape functions of the
MM that reproduced polynomials of degree k = 1 and could not be extended
for k > 1.

Another analysis of the effect of numerical integration on MM was presented
later in [6], where the quadrature is required to satisfy a discrete Green’s for-
mula. This analysis is valid for the MMs, where the shape functions reproduced
polynomials of degree k ≥ 1. It was shown that the energy-norm of the error in
the approximate solution obtained from MM is O(hk−1(h+η)), and optimal or-
der of convergence is obtained with η = O(h). However in [6], the MM was used
to approximate the solution of a Neumann problem with constant coefficient
with no lower order term. We further note that a direct application of the ideas
in [6] to the situation, where MM is applied to a problem with non-constant
coefficient, required the quadrature to be problem dependent, e.g., dependent
on the non-constant coefficients of the problem.

In this paper we extend the analysis in [6] to study the effect of numeri-
cal integration, when the MM is used to approximate the solution of a Neu-
mann problem with non-constant coefficients including the lower order term.
We require the quadrature to satisfy an extended version of the discrete Green’s
formula, which is not problem dependent. We show that the energy-norm of
the error in the approximate solution obtained from MM with quadrature is
O(hk−1(h + η)). For a Neumann problem with no lower order term, we men-
tion that the condition on the quadrature required in this paper is same as the
condition required in [6] for k = 1. However for k > 1, the situation is differ-
ent; a quadrature satisfying the condition proposed in this paper automatically
satisfies the condition required in [6], but not vice versa. In this paper, we have
also investigated the possibility of using different numerical integration rules to
compute the elements of the stiffness matrix, the mass matrix, and the load vec-
tor, which was not done in [6]. Moreover, we have derived numerical integration
rules, satisfying the extended discrete Greene’s formula, in two dimensions for
k = 1 and k = 2 in this paper; numerical integration rules only for k = 1 in one
dimension was presented in [6].
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The outline of the paper is as follows: In Section 2, we presented the nota-
tions and the elliptic Neumann model problem with non-constant coefficients.
The MM and the various properties of the associated finite dimensional space is
given in Section 3. In Section 4, we defined the MM with numerical integration
and listed the assumptions imposed on the numerical integration rule. The ef-
fect of numerical integration on the energy norm of the error in the approximate
solution, obtained from the MM, has been investigated in Section 5. Our main
analytical result, Theorem 5.5, have also been presented in this section. In Sec-
tion 6, we derived numerical integration rules, in 2-dimensions, that satisfy the
main assumption given in Section 4. We presented some numerical examples in
Section 7 that shows the effect of the numerical integration on the energy norm
of the error in the approximate solution.

2 Preliminaries and model problem

Let N the set of all positive integers. For a domain D ⊂ R
d, an integer m ∈

N ∪ {0}, and p ∈ N ∪∞, we denote the usual Sobolev space by Wm,p(D) with
the norm ‖·‖W m,p(D) and semi-norm | · |W m,p(D). We will only consider p = 2,∞
in this paper. The Sobolev space Wm,p(D) will be represented by Hm(D) in
the case p = 2 and by Lp(D) in the case m = 0. Likewise, for a hypersurface
∂D in R

d, we will use the space Lp(∂D) equipped with the norm ‖ · ‖Lp(∂D).

Let V be a normed linear space. We define Ṽ to be the product space
V d, where ṽ = [vi]

d
i=1 ∈ Ṽ is a vector-valued function with its component

vi ∈ V, i = 1, 2, · · · , d. When V = Wm,p(D) or Lp(∂D), the associated norm

of Ṽ is defined by ‖ṽ‖V =
( ∑d

i=1 ‖vi‖p
V

) 1
p in the case 1 ≤ p < ∞ and ‖ṽ‖V =

max{‖vi‖V : i = 1, 2, · · · , d} in the case p = ∞; the semi-norm |ṽ|V (for
V = Wm,p(D)) is defined by using |vi|V instead of ‖vi‖V in the above definition.

A domain D is star-shaped with respect to a ball B ⊂ D if, for all x ∈ D,
the closed convex hull of {x} ∩ B is a subset of D. Let ρmax = sup

{
ρ :

D is star-shaped with respect to a ball of radius ρ
}
, then the chunkiness pa-

rameter of D is defined by

γD =
diam(D)

ρmax
.

Let Ω ⊂ R
d be a bounded domain with Lipschitz continuous boundary Γ =

∂Ω. For the model problem, we consider the Neumann problem

Lu ≡ −∇ ·
(
A∇u

)
+ cu = f, in Ω

A∇u · ~n = g, on Γ (2.1)

where A(x) = {aij(x)}1≤i,j≤d is a symmetric matrix, aij ∈ Ck(Ω), c ∈ C(Ω),
f ∈ L2(Ω) , g ∈ L2(Γ) and ~n is the outward unit normal vector to Γ. We assume
that there is a constant α > 0 such that

d∑

i,j=1

uiaij(x)uj ≥ α

d∑

i=1

u2
i , ∀u ∈ R

d and c(x) ≥ α, ∀ x ∈ Ω. (2.2)
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We note that for v ∈ H2(Ω), a∇v is a vector-valued function, but for simplicity
of notation, we do not put a tilde over it.

The associated variational formulation of (2.1) is given by

Find u ∈ H1(Ω) such that

B(u, v) = L(v), ∀ v ∈ H1(Ω) (2.3)

where

B(u, v) ≡ B1(u, v) + B0(u, v), L(v) ≡
ˆ

Ω

f v dx +

ˆ

Γ

g v ds

and

B1(u, v) ≡
ˆ

Ω

A∇u · ∇v dx, B0(u, v) ≡
ˆ

Ω

c u v dx

It is clear that the bilinear form B(·, ·) is continuous and coercive on H1(Ω) ×
H1(Ω), and it is well known [10] that the variational problem (2.3) has a unique
solution.

3 Meshless methods

The meshless method to approximate the solution of the variational problem
(2.3) is a Galerkin method, where the construction of the underlying finite
dimensional subspace either does not depend on a mesh, or uses a mesh only
minimally. To this end, we consider a one-parameter family of finite dimensional
spaces Vh ⊂ H1(Ω), given by

Vh = span{φh
i ∈ C(Ω) : i ∈ Nh}; Nh is an index set.

The functions {φh
i }i∈Nh

are referred to as shape functions and their construction
either does not depend on a mesh or depends only minimally. Each φh

i has
compact support and we let ωh

i denote the interior of supp φh
i with hi = diamωh

i .
We assume that each ωh

i is star-shaped with respect to a ball oh
i ⊂ ωh

i and their
chunkiness parameters satisfy γωh

i
≤ C, ∀ i ∈ Nh.

Often the shape function {φh
i }i∈Nh

are constructed relative to a set of par-
ticles Xh = {xh

i : i ∈ Nh} ⊂ R
d and each φh

i is associated with a particle xh
i .

When ωh
i ∩ Γ = ∅, then the associated particle xh

i ∈ ωh
i . But when ωh

i ∩ Γ 6= ∅,
then the associated particle xh

i could be outside Ω. We divide the index set Nh

into two disjoint parts, N ′
h and N ′′

h , where,

N ′
h = {i ∈ Nh : ∂ωi ∩ Γ 6= ∅} and N ′′

h = {i ∈ Nh : ω̄i ⊂ Ω}.

Now, we make several assumptions on the space Vh.

A1: For i ∈ Nh, let Si ≡ {j ∈ Nh : ωh
i ∩ ωh

j 6= ∅}. We assume that there is a
constant κ, independent of i, j, and h, such that

cardSi ≤ κ.
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Remark 3.1 This property is referred to as the finite overlap property. If we
let Sx = {j ∈ Nh : x ∈ ωh

j }, then the finite overlap property implies

cardSx ≤ κ, ∀x ∈ Ω. (3.1)

A2: There exist positive constants C2 and C2, independent of h and i, such
that

C1 ≤ hi

h
≤ C2, C1h

d ≤ |ωi| ≤ C2h
d, and C1h

d−1 ≤ |ω̄i ∩ Γ| ≤ C2h
d−1, (3.2)

where |ωi| is the “area” of ωi in R
d and |ωi ∩ Γ| is the “length” of ωi ∩ Γ in

R
d−1.

A3: The shape functions reproduce polynomials of degree k, i.e.,

∑

i∈Nh

p(xh
i )φh

i (x) = p(x), ∀p ∈ Pk and x ∈ Ω. (3.3)

A4: There exists a positive constant C, independent of i and h, such that

‖Dαφh
i ‖L∞(Rd) ≤ Ch

−|α|
i for |α| ≤ q for some q ≥ 1. (3.4)

In this paper, we will assume q = k + 1.
A5: There exist positive constants C1, C2, independent of h and i, such that
for any i ∈ Nh,

C1‖v‖2
L2(ωi)

≤ hd
i

∑

j∈Si

v2
j ≤ C2‖v‖2

L2(ωi)
, (3.5)

C1‖v‖2
L2(∂ωi∩Γ) ≤ hd−1

i

∑

j∈S′

i

v2
j ≤ C2‖v‖2

L2(∂ωi∩Γ), (3.6)

C1|v|2H1(ωi)
≤ hd−2

i

∑

j∈Si

(vj − vi)
2 ≤ C2|v|2H1(ωi)

(3.7)

where v ∈ Vh is of the form v =
∑

i∈Nh
vi φh

i and S′
i ≡ {j ∈ N ′

h : ∂ωj ∩ (∂ωi ∩
Γ) 6= ∅} ⊂ Nh.

Remark 3.2 The finite dimensional space Vh could be viewed as a generaliza-
tion of the standard piecewise linear finite element space based on quasi-uniform
mesh. In the finite element setting, the shape functions φh

i are hat functions,
the particles xh

i are the finite element nodes, and the supports ωh
i are the finite

element “stars”. The quasi-uniform finite elements satisfy the assumptions A1

and A2, whereas the hat functions satisfy A3 and A4 with k = 1. The in-
equalities (3.5), (3.6), and (3.7) are also true for piecewise linear finite elements.
But finite elements are piecewise polynomials and their construction requires a

mesh. �
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Remark 3.3 Many approaches to construct shape functions for meshless meth-
ods are available primarily in the engineering literature; we refer to [8, 9, 16, 21,
24, 23] for details. In all these approaches, the shape functions are not piecewise
polynomials and are not available in terms of explicit mathematical formulas
that could be easily evaluated. This is the price one pays for avoiding a mesh.
For example, in the reproducing kernel particle (RKP) technique, one starts
with a weight function w(x) with compact support such that the origin is in the
interior of the support. The shape function φh

i is sought in the form

φh
i (x) = wh

i (x)
∑

|α|≤k

(x − xh
i )αbh

α(x), (α is a multi-index)

where wh
i (x) = w(x−xi

hi
). For each x ∈ Ω, bh

α(x) are chosen so that (3.3) is
satisfied, which requires solving a linear system. For details, we refer the reader
to [21, 25]. We also note that the shape functions φh

i (x), constructed using these
approaches, do not satisfy the Kronecker delta property, i.e., φh

i (xh
j ) 6= δij . We

further note that if the weight function w ∈ Cq(Ω), then the shape functions
φh

i ∈ Cq(Ω). Thus it is easy to construct smooth shape functions, in particular

with q = k + 1, as assumed in assumption A4. �

Remark 3.4 The inequality (3.5) in assumption A5 implies the local linear
independence of the shape functions {φj : j ∈ Si}. The constants C1 and C2

appearing in A5 may depend on the geometry of ωi and ωj with j ∈ Si, but
are independent of i and h. We note that the assumption A5 is weaker than a

similar assumption used in [6]. �

Remark 3.5 Summing the terms of the inequality (3.5) over i ∈ Nh and using
the assumption A1 and A2, we can obtain

C1‖v‖2
L2(Ω) ≤ hd

∑

i∈Nh

v2
i ≤ C2‖v‖2

L2(Ω), ∀ v =
∑

i∈Nh

viφi ∈ Vh (3.8)

Similarly, we obtain

C1‖v‖2
L2(Γ) ≤ hd−1

∑

i∈N ′

h

v2
i ≤ C2‖v‖2

L2(Γ), ∀ v =
∑

i∈N ′

h

viφi ∈ Vh. (3.9)

In particular, substituting v = 1 in these two inequalities, we get

C1h
−d ≤ |Nh| ≤ C2h

−d, C2h
−d ≤ |N ′′

h | ≤ C2h
−d

C1h
−(d−1) ≤ |N ′

h| ≤ C2h
−(d−1)

(3.10)

These estimates will be used later in the paper. �

In the rest of the paper, we will suppress the parameter h for notational
clarity and write φi, xi, ωi, and oi for φh

i , xh
i , ωh

i , and oh
i , respectively, with the

understanding that they depend on h.
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Based on the finite dimensional space Vh ⊂ H1(Ω), as described above, the
meshless method to approximate the solution of (2.3) is given by

Find uh ∈ Vh such that

B(uh, vh) = L(vh), ∀ vh ∈ Vh (3.11)

The approximation of the exact solution u ∈ H1(Ω) by the solution uh ∈
Vh of (3.11) depends on the approximation property of the space Vh, which
has been studied in [21, 25]. But in these studies, the set of particles, Xh,
has been assumed to be in Ω, which may give rise to boundary layer in the
error as indicated in ([4]). This is precisely the reason some of the particles
have been allowed to be outside Ω in this paper, as well as in [3, 5, 6]. But
the approximation result for Vh remains the same as in [21, 25], even when
some of the particles are allowed to outside Ω; only the analysis requires slight
modification based on an extension result. For completeness, we present the
modified analysis in this paper.

For a function u ∈ W k+1,∞(Rd) ∩ C(Rd), we define its Vh-“interpolant” on
Ω by Ihu, given by

Ihu(x) =
∑

i∈Nh

u(xi)φi(x), x ∈ Ω. (3.12)

It is clear from the reproducing property (3.3) that Ihp(x) = p(x), for x ∈ Ω and
p ∈ Pk. Strictly speaking, Ih is not an interpolation operator since Ihu(xj) 6=
u(xj) for xj ∈ Xh.

When u is defined only on Ω, the interpolant Ihu is undefined as some of
the particles xi may be outside Ω. To address this issue, we use the well-known
extension theorem (see [10, 26]), which provides us with an extension operator

E : L2(Ω) → L2(R
d),

u 7→ ū ≡ Eu

such that

ū(x) = u(x), for x ∈ Ω and ‖Eu‖W k+1,∞(Rd) ≤ C‖u‖W k+1,∞(Ω) (3.13)

where constant C is independent of u ∈ L2(Ω). We now define the Vh-interpolant
of u ∈ W k+1,∞(Ω) ∩ C(Ω) by Ihu(x) ≡ Ihū(x), forx ∈ Ω. We now present an
interpolation result for Vh, which indicates the approximation property of Vh.

Theorem 3.1 Let u ∈ W k+1,∞(Ω)∩C(Ω) and Ihu be the Vh-interpolant of u.
Then there is a positive constant C, independent of h, such that

‖u − Ihu‖W l,p(Ω) ≤ Chk+1−l‖u‖W k+1,∞(Ω) ∀ 0 ≤ l ≤ k + 1 and p ≥ 1. (3.14)

Proof. For i ∈ Nh, let ω̂i be the smallest ball containing the set ∪j∈Si
ωj .

Consider Qk+1
i Eu(x), the Taylor polynomial of degree k (i.e., of order k + 1) of
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Eu averaged over the ball ω̂i (see the definition 4.1.3 in [10] ). Then from the
Lemma 4.3.8 of [10] and assumption A1, we have

‖Eu − Qk+1
i Eu‖W l,∞(ω̂i) ≤ Chk+1−l|Eu|W k+1,∞(ω̂i) ∀ 0 ≤ l ≤ k + 1. (3.15)

The constant C depends on κ and the chunkiness parameter of ω̂i, which is 1,
and thus C is independent of i.

For x ∈ ωi, we note that φj(x) = 0 for j 6∈ Si. Therefore, for x ∈ ωi, we
have

u(x) − Ihu(x) = Eu(x) − Qk+1
i Eu(x) + Qk+1

i Eu(x)

−
∑

j∈Si

[
Eu(xj) − Qk+1

i Eu(xj)
]
φj(x)

−
∑

j∈Si

[
Qk+1

i Eu(xj)
]
φj(x)

= Eu(x) − Qk+1
i Eu(x) −

∑

j∈Si

[
Eu(xj) − Qk+1

i Eu(xj)
]
φj(x),

where we used (3.3) with p(x) = Qk+1
i Eu(x). Therefore, from (3.15) and as-

sumptions A4, A1, A2 we get

‖u − Ihu‖W l,∞(ωi) ≤ ‖Eu − Qk+1
i Eu‖W l,∞(ω̂i)

+
∑

j∈Si

‖Eu − Qk+1
i Eu‖W 0,∞(ω̂i)‖φj‖W l,∞(ω̂i)

≤ Chk+1−l‖Eu‖W k+1,∞(ω̂i) +
∑

j∈Si

Chk+1‖Eu‖W k+1,∞(ω̂i)h
−l

≤ Chk+1−l‖Eu‖W k+1,∞(ω̂i), (3.16)

where C may depend on κ. Thus we immediately get

‖u − Ihu‖W l,p(ωi) ≤ Ch
d
p hk+1−l‖Eu‖W k+1,∞(ω̂i). (3.17)

Finally, using (3.16), (3.17), the assumption A1, and (3.10), we get

‖u − Ihu‖W l,∞(Ω) ≤ sup
i∈Nh

‖u − Ihu‖W l,∞(ωi) ≤ Chk+1−l sup
i∈Nh

‖Eu‖W k+1,∞(ω̂i)

≤ Chk+1−l‖Eu‖W k+1,∞(Rd) ≤ Chk+1−l‖u‖W k+1,∞(Ω)

and

‖u − Ihu‖W l,p(Ω) ≤
[ ∑

i∈Nh

‖u − Ihu‖p

W l,p(ωi)

] 1
p

≤ Ch
d
p hk+1−l‖ū‖W k+1,∞(Rd)|Nh|

1
p

≤ Chk+1−l‖u‖W k+1,∞(Ω),

which gives the desired result. �
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Remark 3.6 We note that Theorem 3.1 holds for u ∈ W k+1,p(Ω), 1 < p < ∞,
provided k + 1 > d/p (k + 1 ≥ d when p = 1). Also for a given l, we only need

q = l in assumption A4 (instead of q = k + 1). �

Now, with Lax-Milgram Theorem, Céa’ Theorem [10] and (3.14), the fol-
lowing approximation result for the meshless method with exact integration is
immediate:

Theorem 3.2 There is a unique solution uh ∈ Vh of the variational problem
(3.11) satisfying

‖u − uh‖H1(Ω) ≤ Chk‖u‖W k+1,∞(Ω), (3.18)

where C is independent of h.

Another consequence of the interpolation error estimate (3.14) in Theorem
3.1 is

‖Ihu‖W k+1,∞(Ω) ≤ ‖u‖W k+1,∞(Ω) + ‖u − Ihu‖W k+1,∞(Ω)

≤ C‖u‖W k+1,∞(Ω), (3.19)

which will be used later in this paper. This is the reason we required q = k + 1
in assumption A4.

4 The meshless method with numerical integra-

tion

In this section, we will present the meshless method with numerical integration
(also referred to as quadrature). We will also state the assumptions imposed on
the underlying numerical integration rule and discuss them.

To motivate the quadrature in MM, we write the solution uh of (3.11) as
uh =

∑
j∈Nh

cjφj . Then the coefficients {cj}j∈Nh
can be determined uniquely

from the linear system
∑

j∈Nh

(
γij + σij

)
cj = li, ∀ i ∈ Nh,

where

γij ≡ B1(φj , φi) =

ˆ

Ω

A∇φj · ∇φi dx =

ˆ

ωi

A∇φj · ∇φi dx,

σij ≡ B0(φj , φi) =

ˆ

Ω

c φjφi dx =

ˆ

ωi

c φjφi dx,

and

li ≡ L(φi) =

ˆ

Ω

fφi dx +

ˆ

Γ

gφi ds =

ˆ

ωi

fφi dx +

ˆ

∂ωi∩Γ

gφi ds;
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we recall that the shape function φi has compact support ωi. We mention
that ωi ∩ ωj can also be used as the domain of integration in the definition of
γij and σij , since the shape function φj has compact ωj. Consequently, the
matrices {γij} and {σij} are symmetric. We have used ωi (instead of ωi ∩ ωj)
in the definition of γij and σij to motivate the numerical integration scheme
in this paper. The integrals γij , σij ,

´

ωi
fφi dx and

´

∂ωi∩Γ
gφi ds have to be

computed numerically using numerical integration formulas on ωi, i ∈ Nh and
on ∂ωi ∩ Γ, i ∈ N ′

h. Let

γ∗
ij ≡ B∗

1 (φj , φi) ≡
 s

ωi

A∇φj · ∇φi dx, σ∗
ij ≡ B∗

0 (φj , φi) ≡
 m

ωi

cφjφi dx,

and

l∗i ≡
 l

ωi

fφi dx +

 

∂ωi∩Γ

gφi ds,

where
ffl s

ωi
,
fflm

ωi
, and

ffl l

ωi
denote the numerical integration rules, defined on ωi, to

approximate the entries of the stiffness matrix, mass matrix, and the load vector
(only the volume integrals), respectively;

ffl

∂ωi∩Γ
is the numerical integration rule

to approximate the “boundary integral” in the elements of the load vector.
We note that for a given i ∈ Nh, we use the same quadrature rule

ffl s

ωi

to compute γ∗
ij for each j ∈ Si (recall the definition of Si in assumption A1

in Section 3); similarly, the same quadrature rule
ffl m

ωi
is used to compute σ∗

ij

for j ∈ Si. But the quadrature rules
ffl s

ωi
and

fflm

ωi
could possibly be different,

i.e., different quadrature rules could be used to approximate the integrals in
the stiffness matrix and the mass matrix. The idea of using possibly different
quadrature rules to compute the stiffness and mass matrix was not considered
in [6].

Remark 4.1 It is easy the check that

∑

j∈Nh

γij = 0, (4.1)

namely, matrix {γij}i,j∈Nh
satisfies “zero row-sum” condition. The same is true

for the matrix {γ∗
ij}i,j∈Nh

. Suppose (yl,i, vl,i)
M
l=1 be the set of integration points
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and corresponding weights of an M -point quadrature rule
ffl s

ωi
. Then

∑

j∈Nh

γ∗
ij =

∑

j∈Nh

 s

ωi

A∇φj · ∇φi dx

=
∑

j∈Nh

M∑

l=1

A(yl,i)∇φj(yl,i) · ∇φi(yl,i) vl,i

=

M∑

l=1

A(yl,i)∇
[ ∑

j∈Nh

φj(yl,i)
]
· ∇φi(yl,i) vl,i

=
M∑

l=1

A(yl,i)∇1 · ∇φi(yl,i) vl,i = 0. (4.2)

We note that (4.2) was an assumption on the quadrature rule in [5], where γ∗
ij

was defined by using quadrature on ωi ∩ ωj . This is one of the reasons that we
defined γ∗

ij by numerically integrating over ωi in this paper (also in [6]) so that

(4.2) is automatically satisfied. �

Let vh =
∑

i∈Nh
viφi and wh =

∑
i∈Nh

wiφi be arbitrary elements in Vh.
Then

B1(vh, wh) =
∑

i,j∈Nh

viγjiwj , B0(vh, wh) =
∑

i,j∈Nh

viσjiwj ,

B(vh, wh) =
∑

i,j∈Nh

vi

(
γji + σji

)
wj , and L(vh) =

∑

i∈Nh

vili.

Therefore, we naturally define

B∗
1 (vh, wh) ≡

∑

i,j∈Nh

viγ
∗
jiwj , B∗

0(vh, wh) ≡
∑

i,j∈Nh

viσ
∗
jiwj , (4.3)

B∗(vh, wh) ≡
∑

i,j∈Nh

vi

(
γ∗

ji + σ∗
ji

)
wj , and L∗(vh) ≡

∑

i∈Nh

vil
∗
i . (4.4)

From this definition, functional L∗(·) is linear on Vh and the forms B∗
1(·, ·),

B∗
0(·, ·), B∗(·, ·) are bilinear on Vh × Vh. Also from (4.2) and (4.1), it is clear

that
B∗

1(1, φi) = 0 = B1(1, φi), ∀ i ∈ Nh. (4.5)

But it is important to note that the matrix {γ∗
ij}i,j∈Nh

may not be symmetric
(in contrast to {γij}i,j∈Nh

), since

γ∗
ij =

 s

ωi

A∇φj · ∇φi dx 6=
 s

ωj

A∇φi · ∇φj dx = γ∗
ji.

Therefore, B∗
1 (φi, 1), ∀ i ∈ Nh may not be zero. Similarly, we can show that

the matrix {σ∗
ij}i,j∈Nh

may not be symmetric, and consequently, the matrix
{γ∗

ij + σ∗
ij}i,j∈Nh

may not be symmetric.

11



The meshless method with numerical quadrature to approximate the solution
of (2.3) is given by

Find u∗
h ∈ Vh such that

B∗(u∗
h, vh) = L∗(vh), ∀ vh ∈ Vh, (4.6)

where B∗(·, ·) and L∗(·) is defined in (4.4). We note that the bilinear form
B∗(·, ·) is not symmetric.

Next, we state certain assumptions on the quadrature used in the mesh-
less method. Some of these assumptions were given in [6]. We include these
assumptions also in this paper for completeness.

QA 4.1 There exist positive constants η and τ , small enough and independent
of i and h, such that

∣∣
ˆ t

ωi

% dx −
 t

ωi

% dx
∣∣ ≤ η |ωi| ‖%‖L∞(ωi), t = s, m, l, (4.7)

and ∣∣
ˆ

∂ωi∩Γ

ϑ ds −
 

∂ωi∩Γ

ϑ ds
∣∣ ≤ τ |∂ωi ∩ Γ| ‖ϑ‖L∞(∂ωi∩Γ) (4.8)

for a class of functions % ∈ Wm1,∞(ωi) and ϑ ∈ Wm2,∞(∂ωi ∩ Γ) satisfying

‖Dα%‖L∞(ωi) ≤ C(hi)
−|α|‖%‖L∞(ωi), |α| ≤ m1 (4.9)

and
‖Dαϑ‖L∞(∂ωi∩Γ) ≤ C(hi)

−|α|‖ϑ‖L∞(∂ωi∩Γ), |α| ≤ m2 (4.10)

where C > 0 is independent of i ∈ Nh and m1, m2 > 1 may depend on the
numerical integration rules and the assumption A4 in Section 2.

Remark 4.2 The constants η and τ are associated with the numerical integra-
tion rules. It is possible to choose numerical integration rules (e.g., by taking
more integration points) such that η and τ are small enough. We refer to Re-
mark 3.3 of [6] for specific examples. We mention that in all the numerically
approximated integrals in this paper, the integrands satisfy the conditions (4.9)

and (4.10). �

QA 4.2 For each i ∈ Nh, let G∗
i : C̃1(ω̄i) → R be a linear functional given by

G∗
i (ṽ) =

 s

ωi

ṽ · ∇φi dx +

 l

ωi

∇ · ṽ φi dx −
 

∂ωi∩Γ

ṽ · ~n φi ds (4.11)

where ~n is the outward normal to ∂ωi ∩ Γ. We assume that

G∗
i (p̃) = 0, ∀p̃ ∈ P̃k−1 (4.12)

where Pk−1 is the space of polynomials of degree k − 1.
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Remark 4.3 For each i ∈ Nh, we consider linear functional Gi : H̃1(ωi) → R

given by

Gi(ṽ) =

ˆ

ωi

ṽ · ∇φi dx +

ˆ

ωi

∇ · ṽ φi dx −
ˆ

∂ωi∩Γ

ṽ · ~n φi ds (4.13)

It is clear from the Green Theorem that

Gi(p̃) = 0, ∀p̃ ∈ P̃k−1 (4.14)

Hence, the assumption (4.12) mimics (4.14) and could be viewed as a discrete

version of the Green Theorem on a particular class of functions P̃k−1. We will

show how to construct the quadrature rules satisfying (4.12) later. �

Remark 4.4 We note that the assumption QA 4.2, in particular (4.12), is a
generalized version of a similar assumption QA3 used in [6] in the case when
A = I. In fact, a numerical integration rule satisfying (4.12) also satisfies QA3
of [6], but not vice versa. Furthermore, we mention that for problems with non-
constant coefficients A(x), a direct use of the ideas presented in [6] will require
the underlying numerical integration rule to satisfy a modified version of the
assumption QA3 of [6] involving A(x). Numerical integration rules, satisfying
this modified assumption, will depend on A(x), i.e., will be problem dependent.
The assumption QA 4.2 in this paper does not require the quadrature rules to

depend on A(x). �

QA 4.3 For each i ∈ Nh, we assume
ffl m

ωi
=
ffl l

ωi
, i.e., the elements of the mass

matrix and the volume integrals in the elements the load vector are computed
using the same integration rule.

Remark 4.5 The integration rules
ffl s

ωi
and

ffl l

ωi
may be different; we do not

need any other assumption on the boundary integration formulas
ffl

∂ωi∩Γ
.

QA 4.4 There is a constant C > 0 such that for η small enough,

|B∗
1(wh, vh)| ≤ C‖wh‖H1(Ω)‖vh‖H1(Ω), ∀ wh, vh ∈ Vh, (4.15)

and
B∗

1(vh, vh) ≥ C‖vh‖2
H1(Ω), ∀ vh ∈ Vh. (4.16)

Remark 4.6 For A = I, the identity matrix, the inequalities (4.15) and (4.16)
were proved in Lemma 3.1 of [6] under the condition η ≤ Ch with C small
enough. The proof of (4.15) and (4.16) for the non-constant coefficient matrix
A(x), under the same conditions, could be proved following the same idea (of
Lemma 3.1 of [6]) and we do not present it here. In our computation, however,
we observed that the condition η ≤ Ch is not necessary to obtain (4.15) and

(4.16); only a small η was needed. �
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Lemma 4.1 Suppose the quadrature satisfy the assumptions QA 4.1 and QA

4.4. Then for η, small enough, there are constants C1 and C2, independent of
h, such that

|B∗(wh, vh)| ≤ C1‖wh‖H1(Ω)‖vh‖H1(Ω) and B∗(vh, vh) ≥ C2‖vh‖2
H1(Ω)

for any wh, vh ∈ Vh.

Proof. Let wh =
∑

i∈Nh
wiφi and vh =

∑
i∈Nh

viφi be in Vh. We first estimate
|B0(wh, vh)−B∗

0(wh, vh)|. For any i ∈ Nh, using (4.7), the assumption A1, and
(3.5), we have

∣∣B0(wh, φi) − B∗
0(wh, φi)

∣∣ =
∣∣
ˆ m

ωi

c wh φi dx −
 m

ωi

c wh φi dx
∣∣

≤ C
∑

j∈Si

|wj |
∣∣∣
ˆ m

ωi

c φj φi dx −
 m

ωi

c φj φi dx
∣∣∣

≤ Cη |ωi| ‖c φj φi‖L∞(ωi) (
∑

j∈Si

|wj |2)
1
2
√

κ

≤ Cη hd h− d
2 ‖wh‖L2(ωi)

√
κ. (4.17)

Therefore, squaring both sides of the above inequality and summing over all
i ∈ Nh, we get

∣∣B0(wh, vh) − B∗
0 (wh, vh)

∣∣ ≤
( ∑

i∈Nh

[
B0(wh, φi) − B∗

0(wh, φi)
]2

) 1
2 ( ∑

i∈Nh

v2
i

) 1
2

≤ Cηh
d
2 (

∑

i∈Nh

‖wh‖2
L2(ωi)

)
1
2 C h− d

2 ‖vh‖L2(Ω)

≤ C η‖wh‖L2(Ω)‖vh‖L2(Ω), (4.18)

where the second and the last inequalities were obtained from (3.8) and the
assumption A1, respectively.

Finally, from the assumption (4.4) and (4.18), we get
∣∣B∗(wh, vh)

∣∣ ≤
∣∣B∗

1(wh, vh)
∣∣ +

∣∣B0(wh, vh)
∣∣ +

∣∣B0(wh, vh) − B∗
0(wh, vh)

∣∣
≤ C‖wh‖H1(Ω)‖vh‖H1(Ω) + C(1 + η)‖wh‖L2(Ω)‖vh‖L2(Ω)

≤ C(1 + η)‖wh‖H1(Ω)‖vh‖H1(Ω)

and from (2.2)
∣∣B∗(vh, vh)

∣∣ ≥ B∗
1(vh, vh) + B0(vh, vh) −

∣∣B0(vh, vh) − B∗
0(vh, vh)

∣∣
≥ C‖vh‖2

H1(Ω) + α‖vh‖2
L2(Ω) − C η‖vh‖2

L2(Ω)

≥ min{C, α − Cη}‖vh‖2
H1(Ω).

We get the desired result by considering η < α/C. �

It is clear from Lemma 4.1 that the bilinear form B∗(·, ·) is bounded and
coercive, and therefore from the Lax-Milgram lemma we conclude that the prob-
lem (4.6) has a unique solution u∗

h ∈ Vh.
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Remark 4.7 It is instructive to illustrate the assumption QA 4.2, i.e., (4.12) in

simpler situations. Let Ω ⊂ R
2 and k = 1, then P̃k−1 = P̃0 = span

{
[1, 0], [0, 1]

}

Considering p̃(x1, x2) = [1, 0] in (4.12), we get

G∗
i

(
[1, 0]

)
=

 s

ωi

∂φi

∂x1
dx −

 

∂ωi∩Γ

n1φi ds = 0, i ∈ Nh, (4.19)

where ~n = [n1, n2]. Similarly, considering p̃(x1, x2) = [0, 1] in (4.12), we get

G∗
i

(
[0, 1]

)
=

 s

ωi

∂φi

∂x2
dx −

 

∂ωi∩Γ

n2φi ds = 0, i ∈ Nh (4.20)

Thus for k = 1, the quadrature must satisfy the two conditions (4.19) and (4.20)
for each i ∈ Nh. In particular, the quadrature must satisfy

 s

ωi

∇φi dx = 0, ∀i ∈ N ′′
h . (4.21)

We now illustrate (4.12) for k = 2. In this case, we know that

P̃k−1 = P̃1 = span
{
[1, 0], [0, 1], [x1, 0], [x2, 0], [0, x1], [0, x2]

}
.

Considering p̃(x1, x2) = [x1, 0] in (4.12), we get

Gi

(
[x1, 0]

)
=

 s

ωi

x1
∂φi

∂x1
dx +

 l

ωi

φi dx −
 

∂ωi∩Γ

x1 n1 φi ds = 0, ∀i ∈ Nh

(4.22)
Similarly, considering p̃(x1, x2) = [x2, 0], p(x1, x2) = [0, x1], and p̃(x1, x2) =
[0, x2] in (4.12), we get

Gi

(
[x2, 0]

)
=

 s

ωi

x2
∂φi

∂x1
dx −

 

∂ωi∩Γ

x2 n1 φi ds = 0, ∀i ∈ Nh, (4.23)

Gi

(
[0, x1]

)
=

 s

ωi

x1
∂φi

∂x2
dx −

 

∂ωi∩Γ

x1 n2 φi ds = 0, ∀i ∈ Nh, (4.24)

and

Gi

(
[0, x2]

)
=

 s

ωi

x2
∂φi

∂x2
dx +

 l

ωi

φi dx −
 

∂ωi∩Γ

x2 n2 φi ds = 0, ∀i ∈ Nh

(4.25)
Thus, for k = 2, the quadrature must satisfy (4.22)–(4.25) in addition to the

assumptions (4.19) and (4.20). �

Remark 4.8 It is clear from (4.19) and (4.20) that for k = 1, only the quadra-
ture rule to compute the elements of the stiffness matrix , i.e.,

ffl s

ωi
, has to satisfy

the assumption QA 4.2; the quadrature rule to compute the elements of the
mass matrix and the volume integrals in the elements of the load vector, i.e.,

fflm

ωi
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(it is same as
ffl l

ωi
), do not have to satisfy QA 4.2 and it could be any accurate

rule satisfying assumption QA 4.1. For k = 2, the conditions (4.22) and (4.25)

indicate that
ffl s

ωi
and

ffl l

ωi
must be related. Even in this situation,

ffl l

ωi
(same as

fflm

ωi
)) could be any accurate quadrature rule, but

ffl s

ωi
has to be satisfy (4.22)

and (4.25). We will obtain
ffl s

ωi
later in the paper with this feature. �

5 Effect of numerical integration

In this section, we will investigate the effect of numerical integration on the
meshless method; in particular, we will estimate the error ‖u−u∗

h‖H1(Ω), where
u is the solution of the problem (2.3) and u∗

h is the solution of the meshless
method (4.6) with numerical integration. We recall from Theorem 3.2 that
‖u−uh‖H1(Ω) = O(hk), where uh is the solution of (3.11) — the meshless method

with exact integration. We will show in this section that ‖u−u∗
h‖H1(Ω) 6= O(hk)

in general, and the error depends on the quadrature parameters η and τ , defined
in (4.7) and (4.8), respectively. We will assume in this section that the exact
solution u of (2.3) is smooth, i.e., u ∈ Ck+1(Ω); this will enable us to focus only
on numerical integration and will allow us to present the main ideas effectively.

It is well-known that Strang’s Lemma ([27, 15]) is one of the main tools to
study the perturbation in the solution of a Galerkin method due to variational
crimes, e.g., numerical integration in a Galerkin method. We present a slight
variation of the Strang’s Lemma in the following result, which will provide us
with an abstract framework to study the error u − u∗

h.

Lemma 5.1 Suppose the quadrature rules satisfy the conditions in the lemma
4.1, and u and u∗

h are the solutions of the variational problems (2.3) and (4.6),
respectively. Then there is a constant C > 0, independent of h, such that, for
any wh ∈ Vh,

‖u − u∗
h‖H1(Ω) ≤ C‖u − wh‖H1(Ω)

+ sup
vh∈Vh

∣∣∣
[
B(wh, vh) − L(vh)

]
−

[
B∗(wh, vh) − L∗(vh)

]∣∣∣
‖vh‖H1(Ω)

.

Proof. Let wh ∈ Vh be arbitrary. Using the coercivity of the bilinear form
B∗(·, ·) (see Lemma 4.1), we have

C‖u∗
h − wh‖2

H1(Ω) ≤ B∗(u∗
h − wh, u∗

h − wh)

= B(u − wh, u∗
h − wh)

+B(wh, u∗
h − wh) − B∗(wh, u∗

h − wh)

−B(u, u∗
h − wh) + B∗(u∗

h, u∗
h − wh)

= B(u − wh, u∗
h − wh)

+
[
B(wh, u∗

h − wh) − L(u∗
h − wh)

]

−
[
B∗(wh, u∗

h − wh) − L∗(u∗
h − wh)

]
.
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Therefore, dividing the above inequality by ‖u∗
h−wh‖H1(Ω) and using the bound-

edness of B(·, ·), we get

‖u∗
h − wh‖H1(Ω) ≤ C‖u − wh‖H1(Ω)

+ sup
vh∈Vh

∣∣∣
[
B(wh, vh) − L(vh)

]
−

[
B∗(wh, vh) − L∗(vh)

]∣∣∣
‖vh‖H1(Ω)

Now, using the triangle inequality, we immediately get

‖u − u∗
h‖H1(Ω) ≤ (C + 1)‖u − wh‖H1(Ω)

+ sup
vh∈Vh

∣∣∣
[
B(wh, vh) − L(vh)

]
−

[
B∗(wh, vh) − L∗(vh)

]∣∣∣
‖vh‖H1(Ω)

,

which is the desired result. �

Remark 5.1 It is clear from lemma 5.1 that we need to estimate the consis-
tency errors

sup
vh∈Vh

∣∣∣
[
B(wh, vh) − L(vh)

]
−

[
B∗(wh, vh) − L∗(vh)

]∣∣∣
‖vh‖H1(Ω)

(5.1)

to estimate the error ‖u − u∗
h‖H1(Ω). We note that in the Strang’s Lemma as

presented in [15], this term is further divided into two terms

sup
vh∈Vh

∣∣∣B(wh, vh) − B∗(wh, vh)
∣∣∣

‖vh‖H1(Ω)
and sup

vh∈Vh

∣∣∣L(vh) − L∗(vh)
∣∣∣

‖vh‖H1(Ω)
.

Keeping the terms together, as in (5.1), is crucial for our analysis of the effect

of numerical integration in the meshless method. �

We now present some notions and associated results that we will use later in
this section. We first define a norm and semi-norm of the matrix A; recall that
we assumed aij(x) ∈ Ck(Ω), ∀ i, j = 1, 2, · · · , d. Suppose D ⊂ Ω be a domain
and let

|A|W l,∞(D) ≡ max
{ d∑

j=1

∣∣aij

∣∣
W l,∞(D)

: 1 ≤ i ≤ d
}

and ‖A‖W l,∞(D) ≡ max
{
|A|W m,∞(D) : 0 ≤ m ≤ l

}
,

for any non-negative integer l ≤ k.

Lemma 5.2 For 0 ≤ l ≤ k, there exists a constant C > 0, depending only on l
and d, such that

‖A ṽ‖W l,∞(D) ≤ C‖A‖W l,∞(D)‖ṽ‖W l,∞(D), ∀ ṽ ∈ W̃ k,∞(D). (5.2)
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Proof. Let 0 ≤ ` ≤ l and suppose ṽ = [vj ]
d
j=1. Then using Leibnitz formula, we

have

|A ṽ|W `,∞(D) = max
1≤i≤d

{∣∣
d∑

j=1

aijvj

∣∣
W `,∞(D)

}

≤ C max
1≤i≤d

{ d∑

j=1

∑̀

m=0

∣∣aij

∣∣
W `−m,∞(D)

∣∣vj

∣∣
W m,∞(D)

}

≤ C
∑̀

m=0

∣∣ṽ
∣∣
W m,∞(D)

max
1≤i≤d

{ d∑

j=1

∣∣aij

∣∣
W `−m,∞(D)

}

= C
∑̀

m=0

∣∣ṽ
∣∣
W m,∞(D)

|A|W `−m,∞(D)

≤ C‖A‖W `,∞(D)‖ṽ‖W `,∞(D) ≤ C‖A‖W l,∞(D)‖ṽ‖W l,∞(D),

where the constant C only depends on l and d. Therefore,

‖A ṽ‖W l,∞(D) ≤ C‖A‖W l,∞(D)‖ṽ‖W l,∞(D),

which is the desired result. �

We now present the next result. For a smooth function v and i ∈ Nh, let

T k−1
i v(x) =

∑

|α|≤k−1

Dαv(x̄i)

α!
(x − x̄i)

α

be the (k − 1)th degree Taylor polynomial of v associated with the center x̄i of
the ball oi ⊂ ωi (recall in Section 2 that ωi is star-shaped with respect to the
ball oi). It is well known that ([10])

|v − T k−1
i v|W j,∞(ωi) ≤

Chk−j

(k − j)!
‖v‖W k,∞(ωi), j = 0, 1, . . . , k (5.3)

For a smooth vector-valued function ṽ = [vj ]
d
j=1 we define

T̃ k−1
i ṽ(x) =

[
T k−1

i vj ]
d
j=1.

T̃ k−1
i ṽ(x) is also vector-valued function with its components being the (k− 1)th

degree Taylor polynomials of the corresponding components of ṽ, centered at
x̄i. We will refer to T̃ k−1

i ṽ(x) as the Taylor polynomial of ṽ associated with x̄i.
We define

R̃i ≡ A∇Ihu − T̃ k−1
i (A∇Ihu), (5.4)

where Ihu is the Vh-interpolant of u, defined in (3.12) through (3.13). Clearly

R̃i is the “remainder” of the Taylor polynomial T̃ k−1
i ṽ(x) with ṽ = A∇Ihu.
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Lemma 5.3 Let 0 ≤ j ≤ k. Then there exists a constant C > 0 such that

|R̃i|W j,∞(ωi) ≤ Chk−j‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω) (5.5)

Proof. Let ṽ ∈ Ck(ωi). Then from the definition of norm of vector valued
functions and from (5.3), we immediately get

|ṽ − T̃ k−1
i ṽ|W j,∞(ωi) ≤ C hk−j‖ṽ‖W k,∞(ωi), j = 0, 1, . . . , k

Now substituting ṽ = A∇Ihu in the above inequality, and using (5.2) and (3.19),
we get, for j = 0, 1, . . . , k,

|R̃i|W j,∞(ωi) ≤ Chk−j‖A∇Ihu‖W k,∞(ωi)

≤ Chk−j‖A‖W k,∞(ωi)‖∇Ihu‖W k,∞(ωi)

≤ Chk−j‖A‖W k,∞(Ω)‖∇Ihu‖W k,∞(Ω)

≤ Chk−j‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω),

which is the desired result. �

The next lemma provides us with an estimate of the error in the numeri-
cal integration for a particular integrand, and it is an important ingredient in
the proof of the main result of the paper. This result is a generalization of
Lemma 4.2 in [6] in the context of variable coefficients A(x) = [aij(x)]1≤i,j≤d;
we mention that the matrix A(x) = I was considered in [6].

Lemma 5.4 For any i ∈ Nh, let Gi(·) and G∗
i (·) be functionals defined by

(4.13), (4.11), respectively. Assume that the quadrature formulas satisfy the
assumptions (4.7), (4.8), and (4.12). Then there exists a positive constant C,
independent of h and i, such that, for i ∈ N ′′

h ,

|Gi(A∇Ihu) − G∗
i (A∇Ihu)| ≤ Cηhk+d−1‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω),

and, for i ∈ N ′
h,

|Gi(A∇Ihu) − G∗
i (A∇Ihu)| ≤ C(η + τ)hk+d−1‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω).

Proof. For i ∈ Nh, let x̄i be the center of the ball oi ⊂ ωi. We expand the
vector-valued function A∇Ihu with respect to x̄i using (5.4) as

A∇Ihu = T̃ k−1
i (A∇Ihu) + R̃i.

We note that T̃ k−1
i (A∇Ihu) ∈ P̃ k−1. Therefore from the assumption on the

quadrature (4.12) and the fact (4.14), we have

G∗
i

(
T̃ k−1

i (A∇Ihu)
)

= 0 and Gi

(
T̃ k−1

i (A∇Ihu)
)

= 0.
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Hence, for i ∈ N ′
h,

|Gi(A∇Ihu) − G∗
i (A∇Ihu)| = |Gi(R̃i) − G∗

i (R̃i)|

≤
∣∣
ˆ

ωi

R̃i · ∇φi dx −
 s

ωi

R̃i · ∇φi dx
∣∣

+
∣∣
ˆ

ωi

∇ · R̃i φi dx −
 l

ωi

∇ · R̃i φi dx
∣∣

+
∣∣
ˆ

∂ωi∩Γ

R̃i · ~nφi ds −
 

∂ωi∩Γ

R̃i · ~n φi ds
∣∣. (5.6)

Also for i ∈ N ′′
h , recalling that φi = 0 on ∂ωi, we get

|Gi(A∇Ihu) − G∗
i (A∇Ihu)| = |Gi(R̃i) − G∗

i (R̃i)|

≤
∣∣
ˆ

ωi

R̃i · ∇φi dx −
 s

ωi

R̃i · ∇φi dx
∣∣

+
∣∣
ˆ

ωi

∇ · R̃i φi dx −
 l

ωi

∇ · R̃i φi dx
∣∣. (5.7)

Now, from (5.6), the assumptions QA 4.1, A4, A2, and the remainder
estimate (5.5), we obtain for i ∈ N ′

h

|Gi(A∇Ihu) − G∗
i (A∇Ihu)| = η|R̃i · ∇φi|L∞(ωi)|ωi| + η|∇ · R̃i φi|L∞(ωi)|ωi|

+τ |R̃i · ~n φi|L∞(∂ωi∩Γ)|∂ωi ∩ Γ|
≤ 2Cηhk−1+d‖A‖W k,∞(ωi)‖u‖W k+1,∞(ωi)

+Cτhk−1+d‖A‖W k,∞(ωi)‖u‖W k+1,∞(ωi)

≤ C(η + τ)hk−1+d‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω),

which is the desired result for i ∈ N ′
h. Also using (5.6) and similar arguments

as above, we get for i ∈ N ′′
h

|Gi(A∇Ihu) − G∗
i (A∇Ihu)| ≤ Cηhk−1+d‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω),

which completes the proof. �

Now, we present our main result, where we estimate the energy norm of the
error u − u∗

h; recall that u∗
h is the unique solution of the meshless method (4.6)

with numerical integration.

Theorem 5.5 Let u ∈ Ck+1(Ω), aij ∈ Ck(Ω), for i, j = 1, 2, · · · , d and c ∈
C(Ω). Suppose the subspace Vh satisfies assumptions A1-A5 and the quadra-
ture schemes satisfy QA1-QA4. Then, for η small enough, there is a positive
constant C, independent of u, η, τ , and h, such that

‖u − u∗
h‖H1(Ω) ≤ Chk‖u‖W k+1,∞(Ω) +

[
Cη(‖A‖W k,∞(Ω) + ‖c‖L∞(Ω)h

2)

+(η + τ)(‖A‖W k,∞(Ω) + ‖c‖L∞(Ω)h
2)h

]
hk−1‖u‖W k+1,∞(Ω). (5.8)
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Proof. First, we substitute wh = Ihu in the result of Lemma 5.1 and get

‖u − u∗
h‖H1(Ω) ≤ C‖u − Ihu‖H1(Ω)

+ sup
vh∈Vh

∣∣∣
[
B(Ihu, vh) − L(vh)

]
−

[
B∗(Ihu, vh) − L∗(vh)

]∣∣∣
‖vh‖H1(Ω)

. (5.9)

We will now estimate the second part of the RHS of (5.9) to prove (5.8). For
any vh =

∑
i∈Nh

viφi ∈ Vh, we have

[
B(Ihu, vh) − L(vh)

]
−

[
B∗(Ihu, vh) − L∗(vh)

]

=
∑

i∈Nh

vi

([
B(Ihu, φi) − L(φi)

]
−

[
B∗(Ihu, φi) − L∗(φi)

])
. (5.10)

For simplicity, in the rest of the proof we denote

Ei ≡
∣∣∣
[
B(Ihu, φi) − L(φi)

]
−

[
B∗(Ihu, φi) − L∗(φi)

]∣∣∣.

Therefore, from (5.10), (3.9), (3.8), and (3.10), we get

∣∣∣
[
B(Ihu, vh) − L(vh)

]
−

[
B∗(Ihu, vh) − L∗(vh)

]∣∣∣

≤ sup
i∈N ′

h

Ei

∑

i∈N ′

h

|vi| + sup
i∈N ′′

h

Ei

∑

i∈N ′′

h

|vi|

≤ C sup
i∈N ′

h

Ei

( ∑

i∈N ′

h

|vi|2
) 1

2 |N ′
h|

1
2 + C sup

i∈N ′′

h

Ei

( ∑

i∈N ′′

h

|vi|2
) 1

2 |N ′′
h |

1
2

≤ C sup
i∈N ′

h

Eih
−(d−1)‖vh‖L2(Γ) + C sup

i∈N ′′

h

Eih
−d‖vh‖L2(Ω)

≤ C sup
i∈N ′

h

Eih
−(d−1)‖vh‖H1(Ω) + C sup

i∈N ′′

h

Eih
−d‖vh‖L2(Ω) (5.11)

where the last inequality was obtained using the Trace theorem (see [10]). We
will now estimate the terms Ei, ∀ i ∈ Nh. For any i ∈ Nh, we have from the
problem (2.1)

ˆ

ωi

fφi dx = −
ˆ

ωi

∇ ·
(
A∇u

)
φi dx +

ˆ

ωi

cuφi dx

= −
ˆ

ωi

∇ ·
(
A∇Ihu

)
φi dx −

ˆ

ωi

∇ ·
[
A∇(u − Ihu

)]
φi dx +

ˆ

ωi

cuφi dx

and
ˆ

∂ωi∩Γ

gφi ds =

ˆ

∂ωi∩Γ

A∇u · ~nφi ds

=

ˆ

∂ωi∩Γ

A∇Ihu · ~nφi ds +

ˆ

∂ωi∩Γ

A∇
(
u − Ihu

)
· ~nφi ds.
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Now setting eI ≡ u − Ihu and recalling the definition (4.13) of the functional
Gi, we get

B(Ihu, φi) − L(φi) = B(Ihu, φi) −
ˆ

ωi

fφi dx −
ˆ

∂ωi∩Γ

gφi ds

=

ˆ

ωi

A∇Ihu · ∇φi dx +

ˆ

ωi

∇ ·
(
A∇Ihu

)
φi dx −

ˆ

∂ωi∩Γ

A∇Ihu · ~nφi ds

+

ˆ

ωi

∇ ·
[
A∇(u − Ihu

)]
φi dx −

ˆ

∂ωi∩Γ

A∇
(
u − Ihu

)
· ~nφi ds

+

ˆ

ωi

c Ihu φi dx −
ˆ

ωi

cuφi dx

= Gi(A∇Ihu) +

ˆ

ωi

∇ ·
(
A∇eI

)
φi dx −

ˆ

∂ωi∩Γ

A∇eI · ~nφi ds

−
ˆ

ωi

ceIφi dx. (5.12)

Similarly, again from the problem (2.1) and the quadratures developed in Section
4, we have

 l

ωi

fφi dx = −
 l

ωi

∇ ·
(
A∇u

)
φi dx +

 l

ωi

cuφi dx

= −
 l

ωi

∇ ·
(
A∇Ihu

)
φi dx −

 l

ωi

∇ ·
[
A∇(u − Ihu

)]
φi dx +

 l

ωi

cuφi dx

and
 

∂ωi∩Γ

gφi ds =

 

∂ωi∩Γ

A∇u · ~nφi ds

=

 

∂ωi∩Γ

A∇Ihu · ~nφi ds +

 

∂ωi∩Γ

A∇
(
u − Ihu

)
· ~nφi ds.

Then recalling the definition (4.11) of the functional G∗
i , we get

B∗(Ihu, φi) − L∗(φi) = B∗(Ihu, φi) −
 l

ωi

fφi dx −
 

∂ωi∩Γ

gφi ds

=

 s

ωi

A∇Ihu · ∇φi dx +

 l

ωi

∇ ·
(
A∇Ihu

)
φi dx −

 

∂ωi∩Γ

A∇Ihu · ~nφi ds

+

 l

ωi

∇ ·
[
A∇(u − Ihu

)]
φi dx −

 

∂ωi∩Γ

A∇
(
u − Ihu

)
· ~nφi ds

+

 m

ωi

c Ihu φi dx −
 l

ωi

cuφi dx

= G∗
i (A∇Ihu) +

 l

ωi

∇ ·
(
A∇eI

)
φi dx −

 

∂ωi∩Γ

A∇eI · ~nφi ds

−
 l

ωi

ceIφi dx, (5.13)
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where the last equality is due to the assumption
ffl l

ωi
=

fflm

ωi
. Therefore, from

(5.12), (5.13) and the assumptions (4.7), (4.8), we get the following estimates
for i ∈ N ′

h, namely,

Ei ≤
∣∣Gi(A∇Ihu) − G∗

i (A∇Ihu)
∣∣

+
∣∣
ˆ

ωi

∇ ·
(
A∇eI

)
φi dx −

 l

ωi

∇ ·
(
A∇eI

)
φi dx

∣∣

+
∣∣
ˆ

∂ωi∩Γ

A∇eI · ~nφi ds −
 

∂ωi∩Γ

A∇eI · ~nφi ds
∣∣

+
∣∣
ˆ

ωi

ceIφi dx −
 l

ωi

ceIφi dx
∣∣

≤
∣∣Gi(A∇Ihu) − G∗

i (A∇Ihu)
∣∣ + η|ωi|

∣∣(A∇eI

)
φi

∣∣
W 1,∞(ωi)

+τ |∂ωi ∩ Γ|‖A∇eI · ~nφi‖L∞(∂ωi∩Γ) + η|ωi|‖ceIφi‖L∞(ωi), (5.14)

and similarly, for i ∈ N ′′
h , recalling that φi = 0 on ∂ωi, we have

Ei ≤
∣∣Gi(A∇Ihu) − G∗

i (A∇Ihu)
∣∣

+η|ωi|
∣∣(A∇eI

)
φi

∣∣
W 1,∞(ωi)

+ η|ωi|‖ceIφi‖L∞(ωi), (5.15)

Now, from (5.2), the interpolation error (3.14), and the boundedness of φi, it
immediately follows that for i ∈ Nh,

∣∣(A∇eI

)
φi

∣∣
W 1,∞(ωi)

≤ C‖A‖W 1,∞(ωi)h
k−1‖u‖W k+1,∞(Ω)

and ‖ceIφi‖L∞(ωi) ≤ C‖c‖L∞(ωi)h
k+1‖u‖W k+1,∞(Ω),

and for i ∈ N ′
h,

‖A∇eI · ~nφi‖L∞(∂ωi∩Γ) ≤ C‖A‖L∞(ωi)h
k‖u‖W k+1,∞(Ω).

Therefore, from (5.14), (5.15), the assumption A2, and Lemma 5.4, we get

Ei ≤
{

C
[
(η + τ)(‖A‖W k,∞(Ω) + ‖c‖L∞(Ω)h

2)
]
hk+d−1‖u‖W k+1,∞(Ω), i ∈ N ′

h;

C
[
η(‖A‖W k,∞(Ω) + ‖c‖L∞(Ω)h

2)
]
hk+d−1‖u‖W k+1,∞(Ω), i ∈ N ′′

h .
(5.16)

Finally, from (5.9), the interpolation error (3.14), (5.11), and (5.16), we get

‖u − u∗
h‖H1(Ω) ≤ Chk‖u‖W k+1,∞(Ω) +

[
Cη(‖A‖W k,∞(Ω) + ‖c‖L∞(Ω)h

2)

+(η + τ)(‖A‖W k,∞(Ω) + ‖c‖L∞(Ω)h
2)h

]
hk−1‖u‖W k+1,∞(Ω),

which is the required result. �

Remark 5.2 The result (5.8) of Theorem 5.5 shows that ‖u − u∗
h‖H1(Ω) =

O[hk+(η+τ)hk+ηhk−1]. Thus we do not have the optimal order of convergence
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(compare with (3.18)). But if we consider numerical integration such that η =
O(h), i.e, we use more accurate integration scheme as we refine h, we get back
the optimal order of convergence ‖u − u∗

h‖H1(Ω) = O(hk). This feature of the
meshless method is very different from the standard FEM, where the same
numerical integration can be used for all values of h to obtain the optimal order
of convergence. We further note that (5.8) indicates that for larger values of
h (i.e., in the pre-asymptotic range), the error ‖u − u∗

h‖H1(Ω) may behave like

O(hk). But as h becomes smaller, we get ‖u − u∗
h‖H1(Ω) = O(hk−1). We will

show this feature in our numerical experiments. �

Corollary 5.6 Suppose all the assumptions in Theorem 5.5 hold, except for the
assumption QA 4.2, which is replaced as follows: For a non-negative integer
l < k,

G∗
i (p̃) = 0, ∀ p̃ ∈ P̃ l−1 and ∀ i ∈ Nh; (5.17)

for the case l = 0, we assume that the condition (5.17) is vacuous, namely,
numerical integration rules satisfy only QA 4.1, QA 4.3, and QA 4.4. Then,
for η small enough, there is a positive constant C, independent of u, η, τ , and
h, such that

‖u − u∗
h‖H1(Ω) ≤ C

[
hk + (η + τ)hl + ηhl−1

]
‖u‖W k+1,∞(Ω).

Proof. (Only a sketch) It can be easily shown by following the proof of the
Lemma 5.4 that for 0 ≤ l ≤ k,

|Gi(A∇Ihu) − G∗
i (A∇Ihu)|

≤
{

C(η + τ)hl+d−1‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω), i ∈ N ′
h

Cηhl+d−1‖A‖W k,∞(Ω)‖u‖W k+1,∞(Ω), i ∈ N ′′
h

. (5.18)

Moreover, for l = 0, we do not need to use the Taylor polynomial of A∇Ihu (as
in the proof of Lemma 5.4) to get, (5.18). Now, instead of using the result of
Lemma 5.4, we use (5.18) in the proof of Theorem 5.5 to get the desired result.
�

Remark 5.3 The result in Corollary 5.6 shows that if the quadrature rules
satisfy (4.12) of the assumption QA 4.2 with k replaced by l and l < k, then
‖u − u∗

h‖H1(Ω) = O(hl−1). Also, if the quadrature rules do not satisfy (4.12)
(i.e., l = 0), then ‖u − u∗

h‖H1(Ω) ≤ Ch−1, which indicates that the error may

increase as h → 0. �

We note that for the case k = 1, Theorem 5.5 yields ‖u−u∗
h‖H1(Ω) = O(h+η).

In fact a similar result for k = 1 can be obtained using less restrictions on the
numerical integration. We state the result in the following corollary.

Corollary 5.7 Let u ∈ C2(Ω), aij ∈ C1(Ω), and c ∈ C(Ω). Suppose the sub-
space Vh, with k = 1, satisfies assumptions A1-A5 and the quadrature schemes
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satisfy QA 4.1, QA 4.4, and (4.12) only for i ∈ N ′′
h . Then, for η small enough,

there is a positive constant C, independent of u, η, τ , and h, such that

‖u − u∗
h‖H1(Ω) ≤ C(h + η + τ)‖u‖W 2,∞(Ω).

The proof of this result can be obtained by slightly modifying the proofs of
Lemma 5.4 and Theorem 5.5; we do not present the complete proof here.

6 Construction of numerical integration formula

In this section, we will derive numerical integration rules that satisfy the assump-
tion QA 4.2, i.e., the condition (4.12) for k = 1 and k = 2 in two dimensions.
We note that we have illustrated the conditions (4.12) in Remark 4.7.

To approximate the integral
´ s

ωi
%(x) dx, we seek a p-point quadrature rule

Qi
c(%) on ωi, of the form

Qi
c(%) ≡

p∑

l=1

ζi
c,l%(yi

c,l), % ∈ C0(ω̄i) and yi
c,l ∈ ω̄i, (6.1)

that satisfies (4.12) with
ffl s

ωi
replaced by Qi

c.

The case k = 1: Recall that in this case, the shape functions {φi}i∈Nh

reproduce polynomials of degree k = 1. We will find the weights ζi
c,l and the

integration points yi
c,l in (6.1) such that (4.12), i.e., (4.19) and (4.20), are satis-

fied with
ffl s

ωi
replaced by Qi

c(·). Suppose we have at our disposal a quadrature
rule

Qi
B(g) ≡

 

∂ωi∩Γ

g(s) ds, g ∈ C0(ω̄i) (6.2)

that accurately approximates the boundary integral
´

∂ωi∩Γ
g(s) ds. We start

with an accurate p-point quadrature rule Qi(%) on ωi of the form

Qi(%) ≡
p∑

l=1

%(yi
l )ζ

i
l . (6.3)

We then define for 1 ≤ l ≤ p,

yi
c,l = yi

l

ζi
c,l = ζi

l + θi
1ζ

i
l

∂φi

∂x1
(yi

l ) + θi
2ζ

i
l

∂φi

∂x2
(yi

l ), (6.4)

and choose θi
1 and θi

2 such that (4.19) and (4.20) are satisfied, i.e.,

Qi
c

( ∂φi

∂x1

)
=

 

∂ωi∩Γ

n1φi ds = Qi
B(n1φi)

Qi
c

( ∂φi

∂x2

)
=

 

∂ωi∩Γ

n2φi ds = Qi
B(n2φi).
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This yields the linear system

[
Qi

(
( ∂φi

∂x1
)2

)
Qi

(
∂φi

∂x1

∂φi

∂x2

)

Qi
(

∂φi

∂x2

∂φi

∂x1

)
Qi

(
( ∂φi

∂x2
)2

)
] [

θi
1

θi
2

]
=

[
Qi

B

(
n1φi

)
− Qi

(
∂φi

∂x1

)

Qi
B

(
n2φi

)
− Qi

(
∂φi

∂x2

)
]

(6.5)

The components θi
1 and θi

2 of the solution of the above system are used in the
definition of ζi

c,l (see (6.4)), and consequently, the resulting Qi
c(%) satisfies the

condition (4.12). We note that for i ∈ N ′′
h , the RHS of (6.5) does not contain the

terms Qi
B(n1φi) and Qi

B(n2φi). We further note that Qi
c(%) could be viewed as

a corrected form of Qi(%), such that Qi
c(%) satisfies the condition (4.12); we will

often refer to Qi
c(%) as the corrected numerical integration formula for k = 1.

We note that Qi
c(%) for k = 1 in the one dimensional case was derived in [6].

Remark 6.1 To discuss the solvability of the system (6.5), we define a weighted
inner product in R

p by

〈u, v〉w ≡
p∑

l=1

ulvlζ
i
l , ∀ u = (u1, · · · , up) and v = (v1, · · · , vp) ∈ R

p

Let V1 =
(

∂φi

∂x1
(yi

1), · · · , ∂φi

∂x1
(yi

p)
)

and V2 =
(

∂φi

∂x2
(yi

1), · · · , ∂φi

∂x2
(yi

p)
)
, then the

coefficient matrix of the linear system (6.5) is

[
〈V1, V1〉w 〈V1, V2〉w
〈V2, V1〉w 〈V2, V2〉w

]
, (6.6)

which the Gramm matrix of the vectors V1 and V2 with respect to the inner
product 〈·, ·〉w. This Gramm matrix is positive when V1 and V2 are linearly
independent. Suppose p ≥ 2 and let there be two integration points yi

m and
yi

n in the set of integration points {yi
l}p

l=1 such that the vectors ∇φi(y
i
m) and

∇φi(y
i
n) are linearly independent, then it is easy to show that the vectors V1

and V2 are linearly independent. �

The case k = 2: We recall that in this case, the shape functions {φi}i∈Nh

reproduce polynomials of degree k = 2. We will find ζi
c,l and yi

c,l in (6.1) such

that (4.12), with
ffl s

ωi
replaced by Qi

c, is satisfied for k = 2.

Suppose in addition to the quadrature rule Qi
B(g) (see (6.2)), we also have

at our disposal a quadrature rule

Qi
F (f) ≡

 l

ωi

f(x) dx

that accurately approximates the integral
´ l

ωi
f(x) dx. As in the case k = 1, we

start with an accurate p-point quadrature rule Qi(%) (see (6.3)). We note that
we could choose Qi(·) to be same as Qi

F (·). Suppose B = {p̃m}6
n=1 be a basis
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for P̃1 (recall that dim P̃1 = 6; a basis of P̃1 is given in Remark 4.7). Then for
k = 2, the condition (4.12), with

ffl s

ωi
replaced by Qi

c(·), is equivalent to

Qi
c

(
p̃m · ∇φi

)
= Qi

B

(
p̃m · ~nφi

)
− Qi

F

(
∇ · p̃mφi

)
, for 1 ≤ m ≤ 6. (6.7)

We now define, for 1 ≤ l ≤ p,

yi
c,l = yi

l

ζi
c,l = ζi

l +

6∑

n=1

θi
nζi

l

(
p̃n · ∇φi

)
(yi

l ), (6.8)

where {θi
n}6

n=1 are chosen such that (6.7) is satisfied. We first note that from the
definition of Qi

c(·) in (6.1), with yi
c,l, ζi

c,l as defined above, we get for 1 ≤ m ≤ 6,

Qi
c(p̃m · ∇φi) = Qi

(
p̃m · ∇φi

)
+

p∑

l=1

6∑

n=1

θi
nζi

l

(
p̃n · ∇φi

)
(yi

l )
(
p̃m · ∇φi

)
(yi

l )

= Qi
(
p̃m · ∇φi

)
+

6∑

n=1

θi
nQi

(
(p̃n · ∇φi) (p̃m · ∇φi)

)

Therefore (6.7) is equivalent to the linear system

6∑

n=1

θi
nQi

(
(p̃n · ∇φi) (p̃m · ∇φi)

)
= Qi

B

(
p̃m · ~nφi

)

−Qi
F

(
∇ · p̃mφi

)
− Qi

(
p̃m · ∇φi

)
, for 1 ≤ m ≤ 6. (6.9)

We use the solution {θn}6
n=1 of the above linear system in the definition of ζi

c,l

(see (6.8)), and consequently, Qi
c(%) will satisfy the condition (4.12). We will

often refer to Qi
c(%) as the corrected numerical integration formula for k = 2.

We note that solving the linear system (6.9) could be facilitated by consider-
ing the basis B = {p̃m}6

m=1 = {(1, 0), (x1 − xi1, 0), (x2 − xi2, 0), (0, 1), (0, x1 −
xi1), (0, x2 − xi2)}, where xi = (xi1, xi2) is the particle associated with ωi.

Remark 6.2 To discuss the solvability of the system (6.9), we define a weighted
inner product for R

p by

〈u, v〉w ≡
p∑

l=1

ulvlζ
i
l , ∀ u = (u1, · · · , up) and v = (v1, · · · , vp) ∈ R

p

Let Vn =
([

p̃n · ∇φi

]
(yi

1), · · · ,
[
p̃n · ∇φi

]
(yi

p)
)
, 1 ≤ n ≤ 6, then the coefficient

matrix of the linear system (6.9) is



〈V1, V1〉w 〈V1, V2〉w · · · 〈V1, V6〉w
〈V2, V1〉w 〈V2, V2〉w · · · 〈V2, V6〉w

...
...

. . .
...

〈V6, V1〉w 〈V6, V2〉w · · · 〈V6, V6〉w



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which is exactly the Gramm matrix of the vectors Vn, 1 ≤ n ≤ 6 with respect to
the inner product 〈·, ·〉w . This Gramm matrix is positive if the vectors {Vl}6

l=1

are linearly independent. We note that p ≥ 6 is a necessary condition for
the linear independence of the vectors {Vl}6

l=1. We further mention that the
positivity of the Gramm matrix is subtle. When ωi is a square, our computations
show that the Gramm matrix is positive when Qi is the 4× 4 Gauss rule on ωi,

but it has a zero eigenvalue when Qi is the 3 × 3 Gauss rule. �

We now give a brief sketch of the derivation of the numerical integration
rule Qi

c(·), in 1 dimension (i.e., when d = 1) with ωi = (αi, βi), such that (4.12)
for k = 2 is satisfied with

ffl s

ωi
replaced by Qi

c. We will use the one dimensional
quadrature rule in our numerical examples in the next section.

As before, we start with the quadrature rules Qi
F (·) and Qi(·); we recall that

both the rules could also be same. We first note that, for d = 1, the “boundary

integral” term in (4.11) is vφi

∣∣βi

αi
; thus we do not need the quadrature rule Qi

B(·).
We further note that P̃1 = P1 and therefore m = dim P1 = 2. Thus (6.7), for
d = 1, is written as





Qi
c(φ

′
i(x)) = φi(x)

∣∣βi

αi

Qi
c

([
(x − xi)φ

′
i(x)

])
= (x − xi)φi(x)

∣∣βi

αi
− Qi

F (φi)
(6.10)

We now define yi
c,l, ζi

c,l (compare with (6.8)) as

{
yi

c,l = yi
l

ζi
c,l = ζi

l + θi
1ζ

i
l φ

′
i(y

i
l) + θi

2ζ
i
l

[
(yi

l − xi)φ
′
i(y

i
l)

]
,

(6.11)

where θi
1, θi

2 are chosen such that (6.10) is satisfied. Using Qi
c(·), with yi

c,l, ζi
c,l

as defined above, in (6.10) yields the linear system for θi
1, θi

2, namely,
[

Qi(φ′2
i (x)) Qi

[
(x − xi)φ

′2
i (x)

]

Qi
[
(x − xi)φ

′2
i (x)

]
Qi

[
(x − xi)

2φ′2
i (x)

]
] [

θi
1

θi
2

]

=

[
φi(x)|βi

αi
− Qi(φ′

i)

(x − xi)φi(x)|βi
αi

− Qi
[
(x − xi)φ

′
i(x)

]
− Qi

F (φi)
]
.

]
(6.12)

7 Numerical Results

We present numerical examples to illuminate the results obtained in Section
5. Let Ω = (0, 1) and we consider the Neumann problem with non-constant
coefficients, namely,

−(au′)′ + cu = f, x ∈ Ω

a(0)u′(0) = 1, a(1)u′(1) = 2e,

where a(x) = 1 + x3, c(x) = 1 + sin2 x, and f(x) = ex(sin2 x − x3 − 3x2). The
exact solution of the problem is u(x) = ex.
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To approximate the solution u(x) of the above problem by the meshless
method (4.6), we first define the shape functions of the finite dimensional space
Vh. For a given non-negative integer k and a positive real number R, let φ(x)
be the basic RKP shape function with compact support [−R, R] satisfying

∑

i∈Z

ilφ(x − i) = xl, ∀ x ∈ R and l = 0, 1, . . . , k. (7.1)

We mention that there exists φ(x) satisfying (7.1) when R ≥ (k +1)/2 (see e.g.,
[3]). Consider a positive integer N and for h = 1/N , we consider the index set

Nh = {−[R], · · · , 0, 1, · · · , N, · · · , N + [R]},

where [R] is the integer part of R. For each i ∈ Nh, we define the RKP shape
functions

φi(x) ≡ φ
(x

h
− i

)
, x ∈ Ω.

Then suppφi = [αi, βi] = [ih − Rh, ih + Rh] ∩ [0, 1]. Defining the set of par-
ticles Xh = {xi = ih, i ∈ Nh}, it can be easily shown that {φi}Nh

i=1 reproduce
polynomials of degree k, i.e.,

∑

i∈Nh

xl
iφi(x) = xl, ∀ x ∈ Ω and l = 0, 1, . . . , k.

Moreover, recalling the definitions of the index sets N ′
h and N ′′

h , we have

N ′
h = {−[R], · · · , [R], N−[R], · · · , N +[R]} and N ′′

h = {[R]+1, · · · , N−[R]−1}

We note that the function φ(x) has been constructed following the ideas
mentioned in Remark 3.3 (using h = 1, xj = j ∈ Z, and i = 0, i.e., φ(x) =
φ1

0(x)), where we have used the cubic spline weight function for w(x) with
compact support [−R, R]; for the definition of cubic spline weight function, we
refer to [3, 4]. We further note that the cubic spline weight function is symmetric
in [−R, R], and consequently the associated shape functions φi(x), i ∈ N ′′

h , are
also symmetric in [αi, βi].

The case k = 1

The basic shape function φ(x) was constructed with R = 1.8. For i ∈ Nh,
we consider the standard p-point Gaussian integration rule on [αi, βi], namely,

Qi
g(f) ≡

p∑

l=1

f(yi
l)ζ

i
l , ∀ f ∈ C(ωi),

where {yi
l : 1 ≤ l ≤ p} are the Gaussian integration points in [αi, βi] and {ζi

l :
1 ≤ l ≤ p} are the associated weights. It is well known that the points yi

l are
symmetrically placed in the interval [αi, βi]; also the weights ζi

l are symmetric,
i.e., ζi

s = ζi
p+1−s, s = 1, 2, . . . , p.
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Recall that φi(x), for i ∈ N ′′
h , is symmetric, and consequently, φ′

i(x), i ∈ N ′′
h ,

is anti-symmetric in [αi, βi] about the mid-point. Therefore, we get

Qi
g(φ

′
i) = 0, ∀ i ∈ N ′′

h . (7.2)

Thus the numerical integration rule Qi
g satisfies the condition (4.12), i.e., the

discrete Green’s formula, for i ∈ N ′′
h (see also (4.21)). We used Qi

g, with p =
8, 16, 32, and 64 to compute γ∗

ij , σ∗
ij , and l∗i in the variational problem (4.6).

We note that in the one dimensional case, evaluation of the boundary integrals
is trivial. We further note that η decreases as p increases. We have computed
the solution u∗

h of (4.6) and have presented the error ‖u − u∗
h‖H1(Ω) for various

values of h in Table 1. We also presented the log-log graph of ‖u − u∗
h‖H1(Ω)

with respect to h in Figure 1. It is clear that for p = 16, 32 and 64, the
error ‖u − u∗

h‖H1(Ω) first decreases and then “levels off”, which suggests that
‖u − u∗

h‖H1(Ω) = O(h + η). This illuminates the result of the Corollary 5.7.

Table 1. MM with k = 1. Standard Gaussian integration rule

h
‖u − u∗

h‖H1(Ω)

8 points 16 points 32 points 64 points
1/10 1.9883E-02 3.4312E-03 3.4040E-03 3.3908E-03
1/20 2.3933E-02 1.7751E-03 1.7851E-03 1.7427E-03
1/40 2.6763E-02 9.1993E-04 9.8673E-04 8.8411E-04
1/80 2.8425E-02 4.9672E-04 6.4523E-04 4.4625E-04
1/160 2.9324E-02 3.0333E-04 5.3111E-04 2.2612E-04
1/320 2.9791E-02 2.2761E-04 5.0200E-04 1.1769E-04
1/640 3.0029E-02 2.0272E-04 4.9631E-04 6.7007E-05
1/1280 3.0150E-02 1.9519E-04 4.9581E-04 4.6261E-05

Table 1. The H1 norm of the error, ‖u−u∗
h‖H1(Ω), where u = ex and u∗

h is the

solution of the MM, employing shape functions that reproduced polynomials

of degree k = 1. Standard p-point Gaussian integration rule, with p = 8, 16, 32

and 64, was used in the MM. These rules satisfy the discrete Green’s formula

in the interior for k = 1, i.e., the assumption (7.2).
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Figure 1. The loglog plot of ‖u − u∗
h‖H1(Ω) with respect to h, where u = ex

and u∗
h is the solution of the MM, employing shape functions that reproduce

polynomials of degree k = 1. Standard p-point Gaussian rule is used, which

satisfy the assumption (7.2).

We now show that the condition (4.12) on the underlying quadrature rule is a
necessary condition for the result presented in Theorem 5.5, i.e., ‖u−u∗

h‖H1(Ω) =
O(h+η). We consider a non-symmetric Gaussian integration rule that does not
satisfy the condition (4.12), i.e., does not satisfy the discrete Green’s formula.
For i ∈ Nh, we consider the mapping Ti : [αi, βi] → [αi, βi] given by

z = Ti(y) = y +
0.2

βi − αi

[(
y − αi + βi

2

)2 −
(βi − αi

2

)2]

Therefore, for a smooth function f , we have
ˆ βi

αi

f(z)dz =

ˆ βi

αi

f(Ti(y))T ′
i (y)dy.

The integral on the RHS of the above equality could be approximated by the
Gaussian rule Qi

g to obtain an integration rule on [αi, βi] to approximate the

integral
´ βi

αi
f(z)dz, namely,

Qi
ng(f) ≡

p∑

l=1

f(yi
nl)ζ

i
nl, (7.3)

where yi
nl = Ti(y

i
l) and ζi

nl = T ′
i (y

i
l )ζ

i
l . We will refer to Qi

ng as a p-point
non-symmetric Gaussian integration rule on [αi, βi]. It is well known that the
algebraic precision of Qi

g is 2p − 1; we can show that the algebraic precision of

Qi
ng is p − 1.
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Table 2. MM with k = 1. Non-symmetric Gaussian integration rule.

h
‖u − u∗

h‖H1(Ω)

8 points 16 points 32 points 64 points
1/10 4.5373E-01 8.5286E-03 3.4098E-03 3.3908E-03
1/20 1.1694E+00 2.0281E-02 2.0558E-03 1.7425E-03
1/40 2.7436E+00 4.4534E-02 2.8166E-03 8.8444E-04
1/80 6.3125E+00 9.2759E-02 5.9275E-03 4.5245E-04
1160 1.4474E+01 1.8844E-01 1.2420E-02 2.7798E-04
1/320 3.2278E+01 3.7713E-01 2.5442E-02 3.5063E-04
1/640 6.9243E+01 7.4415E-01 5.1451E-02 6.6803E-04
1/1280 1.4414E+02 1.4379E+00 1.0329E-01 1.3328E-03

Table 2. The H1 norm of the error, ‖u − u∗
h‖H1(Ω), where u = ex and

u∗
h is the solution of the MM, employing shape functions that reproduced

polynomials of degree k = 1. Non-symmetric p-point Gaussian integration

rule, with p = 8, 16, 32 and 64, was used in the MM. These integration rules

do not satisfy the discrete Green’s formula for k = 1.

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

h

‖u−u∗
h
‖H1(Ω)

 8−point
16−point
32−point
64−point

Figure 2. The loglog plot of ‖u − u∗
h‖H1(Ω) with respect to h, where u = ex

and u∗
h is the solution of the MM, employing shape functions that reproduced

polynomials of degree k = 1. Non-symmetric p-point Gaussian integration

rules were used, which do not satisfy the discrete Green’s formula for k = 1.

We use the non-symmetric Gaussian integration rule Qi
ng, with p = 8, 16, 32,

and 64, to compute γ∗
ij , σ∗

ij , and l∗i in the variational problem (4.6). We com-
puted the solution u∗

h of (4.6) and presented the error ‖u−u∗
h‖H1(Ω) for various

values of h in Table 2. We also presented the log-log plot of ‖u−u∗
h‖H1(Ω) with
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respect to h in Figure 2. It is clear that ‖u− u∗
h‖H1(Ω) increases as h decreases;

for p = 32 and 64, the error first decreases and then increases. In all the cases,
the error ‖u − u∗

h‖H1(Ω) behaves like O(h−1), as indicated in Corollary 5.6 and
Remark 5.3.

Now following the ideas presented in Section 6, we will correct the non-
symmetric Gaussian integration rule Qi

ng(·) (given in (7.3)), such that the cor-
rected numerical integration rule (see (6.1))

Qi
c(%) ≡ Qi

ng,c(%) =

p∑

l=1

%(yi
c,l)ζ

i
c,l

satisfies the condition (4.12). We note that for d = 1, the condition (4.12) for
k = 1 is

Qi
ng,c(φ

′
i) = φ(βi) − φ(αi). (7.4)

For 1 ≤ i ≤ p, we consider

yi
c,l = yi

nl and ζi
c,l = ζi

nl + θiζi
nlφ

′
i(y

i
nl),

with

θi =
φi(βi) − φi(αi) −

∑p
l=1 φ′

i(y
i
nl)ζ

i
nl∑p

l=1 φ′2
i (yi

nl)ζ
i
nl

.

Then it can be shown, following the ideas in Section 6 for d = 1, that Qi
ng,c(·)

satisfies the condition (4.12), i.e., (7.4). However, we note that unlike the stan-
dard Gaussian integration rule Qi

g(·), the integration points for the quadrature

rule Qi
ng,c(·) are not symmetrically placed in [αi, βi]. The expression for the cor-

rected numerical integration rule for d = 1 was also derived in [6] for a slightly
different situation. We will refer to Qi

ng,c(·) as the corrected non-symmetric
Gaussian integration rule for k = 1.

We now use the corrected integration rule Qi
ng,c(·) to compute γ∗

ij in problem

(4.6); the terms σ∗
ij and l∗i in (4.6) are computed using the integration rule Qi

ng

(uncorrected). We computed the solution u∗
h of (4.6) and have presented the

error ‖u − u∗
h‖H1(Ω), for various values of h in Table 3. We also presented the

log-log plot of ‖u − u∗
h‖H1(Ω) with respect to h in Figure 3. It is clear that

‖u − u∗
h‖H1(Ω) levels off as h decreases; the error first decreases and then levels

off for p = 16, 32, and 64. This suggests that ‖u − u∗
h‖H1(Ω) = O(h + η).

Table 3. MM with k = 1. Corrected non-symmetric Gaussian integration rule for k = 1.
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h
‖u − u∗

h‖H1(Ω)

8 points 16 points 32 points 64 points
1/10 5.6887E-03 3.4243E-03 3.4004E-03 3.3907E-03
1/20 4.8897E-03 1.7538E-03 1.7735E-03 1.7424E-03
1/40 4.9036E-03 9.8324E-04 9.5897E-04 8.8351E-04
1/80 5.0486E-03 7.3643E-04 5.9529E-04 4.4492E-04
1/160 5.1580E-03 7.0595E-04 4.6444E-04 2.2331E-04
1/320 5.2221E-03 7.2101E-04 4.2812E-04 1.1201E-04
1/640 5.2564E-03 7.3597E-04 4.2001E-04 5.6271E-05
1/1280 5.2742E-03 7.4520E-04 4.1871E-04 2.8400E-05

Table 3. The H1 norm of the error, ‖u−u∗
h‖H1(Ω), where u = ex and u∗

h is the

solution of the MM, employing shape functions that reproduced polynomials

of degree k = 1. Corrected non-symmetric Gaussian integration rule for k = 1,

with p = 8, 16, 32 and 64, was used in the MM. The integration rules satisfy

the discrete Green’s formula for k = 1.
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Figure 3. The loglog plot of ‖u − u∗
h‖H1(Ω) with respect to h, where u = ex

and u∗
h is the solution of the MM, employing shape functions that reproduce

polynomials of degree k = 1. Corrected p-point non-symmetric Gaussian rules

for k = 1 were used, which satisfy the discrete Green’s formula for k = 1.

The case k = 2

The basic shape function φ(x), satisfying (7.1) with k = 2, was constructed
with R = 2.2. Let Qi(·) = Qi

ng(·) be the p-point non-symmetric Gaussian inte-
gration rule on [αi, βi], as given in (7.3). We consider the associated corrected
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non-symmetric Gaussian integration rule Qi
c(·) for k = 2; Qi

c(·) satisfies the
discrete Green’s formula (4.12) for k = 2, d = 1, i.e., it satisfies (6.10). The in-
tegration points {yi

c,l}p
l=1 and the associated weights {ζi

c,l}p
l=1 of Qi

c(·) are given

by (6.11) with yi
l = yi

n,l and ζi
l = ζi

n,l for 1 ≤ l ≤ p. We mention that θi
1, θi

2

in (6.11) are obtained from the solution of (6.12), with Qi
F (φi) = Qi

ng(φi). We

used the corrected non-symmetric Gaussian integration rule Qi
c(·) (for k = 2)

to compute the terms γ∗
ij in the variational problem (4.6). The terms σ∗

ij and
l∗i were computed using the non-symmetric Gaussian integration rule (uncor-
rected) Qi

ng(·). We computed the solution u∗
h of (4.6) and have presented the

values of ‖u − u∗
h‖H1(Ω), for various values of h in Table 4. We also presented

the log-log plot of the ratio
‖u−u∗

h‖H1(Ω)

h
with respect to h in Figure 4. It is clear

that u∗
h converges to u, the solution of (2.3), as h becomes smaller. The Figure

4 also indicates that ‖u − u∗
h‖H1(Ω) = O[h(h + η)], illuminating the result of

Theorem 5.5 for k = 2.

Table 4. MM with k = 2. Corrected non-symmetric Gaussian rule for k = 2.

h
‖u − u∗

h‖H1(Ω)

8 points 16 points 32 points 64 points
1/10 6.8778E-03 1.3037E-03 7.0255E-04 6.8283E-04
1/20 4.4966E-03 8.3073E-04 2.1238E-04 1.7378E-04
1/40 2.5677E-03 4.8134E-04 8.4965E-05 4.4034E-05
1/80 1.3736E-03 2.5972E-04 4.1096E-05 1.1258E-05
1/160 7.1071E-04 1.3494E-04 2.0824E-05 3.0523E-06
1/320 3.6153E-04 6.8783E-05 1.0558E-05 9.6564E-07
1/640 1.8234E-04 3.4724E-05 5.3252E-06 3.8283E-07
1/1280 9.1564E-05 1.7446E-05 2.6751E-06 1.7719E-07

Table 4. The H1 norm of the error, ‖u−u∗
h‖H1(Ω), where u = ex and u∗

h is the

solution of the MM, employing shape functions that reproduced polynomials

of degree k = 2. Corrected p-point non-symmetric Gaussian integration rule

for k = 2, with p = 8, 16, 32 and 64, was used in the MM. The integration

rules satisfy the discrete Green’s formula for k = 2.
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Figure 4. The loglog plot of the ratio
‖u−u

∗

h‖
H1(Ω)

h
with respect to h, where

u = ex and u∗
h is the solution of the MM, employing shape functions that

reproduce polynomials of degree k = 2. Corrected p-point non-symmetric

Gaussian rules for k = 2 were used, which satisfy the discrete Green’s formula

for k = 2.

We will now show the effect of quadrature on ‖u − u∗
h‖H1(Ω), when the

quadrature does not satisfy the condition (4.12) for k = 2. We first computed
γ∗

ij in (4.6) using the corrected p-point non-symmetric integration rule for k = 1

(see Qi
ng,c(·) given before). We note that this quadrature rule satisfies only

the first condition in (6.10). The terms σ∗
ij and l∗i were computed using the p-

point non-symmetric gaussian integration rule Qi
ng(·). The error ‖u−u∗

h‖H1(Ω)

for various values of h and the associated log-log plot is given in Table 5 and
Figure 5 respectively. These results indicate that ‖u − u∗

h‖H1(Ω) = O(h + η)
and u∗

h 9 u as h → 0. Finally, we used Qi
ng(·) to compute γ∗

ij in (4.6); Qi
ng(·)

does not satisfy any of the conditions in (6.10). The terms σ∗
ij and l∗i were again

computed using Qi
ng(·). The error ‖u − u∗

h‖H1(Ω) for various values of h and
the associated log-log plot is given in Table 6 and Figure 6 respectively. It is
clear that the error ‖u−u∗

h‖H1(Ω) diverges as h decreases; in fact ‖u−u∗
h‖H1(Ω)

behaves like O(h−1) as suggested by Corollary 5.6 for k = 2.

Table 5. MM with k = 2. Corrected non-symmetric Gaussian rule for k = 1.
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h
‖u − u∗

h‖H1(Ω)

8 points 16 points 32 points 64 points
1/10 3.8161E-02 6.3683E-03 1.8719E-03 6.9042E-04
1/20 4.0997E-02 1.2019E-02 1.9499E-03 2.2130E-04
1/40 3.9586E-02 1.5615E-02 2.0005E-03 1.5928E-04
1/80 3.8040E-02 1.7666E-02 2.0156E-03 1.6104E-04
1/160 3.7035E-02 1.8762E-02 2.0196E-03 1.6434E-04
1/320 3.6472E-02 1.9330E-02 2.0205E-03 1.6610E-04
1/640 3.6174E-02 1.9619E-02 2.0208E-03 1.6699E-04
1/1280 3.6022E-02 1.9764E-02 2.0208E-03 1.6743E-04

Table 5. The H1 norm of the error, ‖u−u∗
h‖H1(Ω), where u = ex and u∗

h is the

solution of the MM, employing shape functions that reproduced polynomials

of degree k = 2. Corrected p-point non-symmetric Gaussian integration rule

for k = 1 (not corrected for k = 2), with p = 8, 16, 32 and 64, was used in

the MM. The integration rules do not satisfy the discrete Green’s formula for

k = 2.

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

h

‖u−u∗
h
‖H1(Ω)

8−point
16−point
32−point
64−point

Figure 5. The loglog plot of ‖u − u∗
h‖H1(Ω) with respect to h, where u = ex

and u∗
h is the solution of the MM, employing shape functions that reproduce

polynomials of degree k = 2. Corrected p-point non-symmetric Gaussian rules

for k = 1 were used, which do not satisfy the discrete Green’s formula for

k = 2.

Table 6. Non-symmetric(no correction) Gaussian rule: k=2.
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h
‖u − u∗

h‖H1(Ω)

8 points 16 points 32 points 64 points
1/10 9.4346E-01 4.6767E-02 7.5982E-03 7.6165E-04
1/20 2.0155E+00 4.5294E-02 2.1562E-02 1.0294E-03
1/40 4.3714E+00 9.2717E-02 5.0461E-02 2.3620E-03
1/80 9.7615E+00 2.8436E-01 1.0883E-01 5.0628E-03
1/160 2.1885E+01 7.1121E-01 2.2511E-01 1.0474E-02
1/320 4.7659E+01 1.6259E+00 4.5406E-01 2.1309E-02
1/640 1.0044E+02 3.6444E+00 8.9677E-01 4.3013E-02
1/1280 2.0680E+02 8.2709E+00 1.7231E+00 8.6554E-02

Table 6. The H1 norm of the error, ‖u − u∗
h‖H1(Ω), where u = ex and

u∗
h is the solution of the MM, employing shape functions that reproduced

polynomials of degree k = 2. Non-symmetric p-point Gaussian integration

rule, with p = 8, 16, 32 and 64, was used in the MM. The integration rules do

not satisfy the discrete Green’s formula for k = 2.
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Figure 6. The loglog plot of ‖u − u∗
h‖H1(Ω) with respect to h, where u = ex

and u∗
h is the solution of the MM, employing shape functions that reproduce

polynomials of degree k = 2. Non-symmetric p-point Gaussian integration

rules were used, which do not satisfy the discrete Green’s formula for k = 2.
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