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Summary. Particle methods, also known as meshless or meshfree methods,
have become popular in approximating solutions of partial differential equa-
tions, especially in the engineering community. These methods do not employ
a mesh, or use it minimally, in the construction of shape functions. There is a
wide variety of classes of shape functions that can be used in particle meth-
ods. In this paper, we primarily address the issue of selecting a class of shape
functions, among this wide variety, that would yield efficient approximation
of the unknown solution. We have also made several comments and observa-
tions on the order of convergence of the interpolation error, when these shape
functions are used; specifically, we have shown that the interpolation error
estimate, for certain classes of shape functions, may not indicate the actual
order of convergence of the approximation error.

Mathematics Subject Classification (2000): 65N15, 65N30, 41A30

1 Introduction

Recently, a class of methods known as particle methods, has attracted atten-
tion in the context of approximating solutions of partial differential equations
that arise in computational mechanics. These methods are also referred to as
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meshless methods or meshfree methods. The main feature of these meth-
ods is that they do not employ a mesh, or use a mesh only minimally, in the
construction of shape functions. Particle methods have potential for efficiently
handling certain difficult problems, e.g., problems with large deformations,
or crack propagation [11,15].

Several particle methods have been developed over the last decade, e.g.,
Moving Least Square particle methods (MLS), Reproducing Kernel Particle
methods (RKP), Moving Least Square Kernel particle methods (MLSK). For
an overview of these methods, we refer to [3,7,14,16–18]. Particle methods
are related to Generalized Finite Element Method [9,19,25]. One of the main
differences between various particle methods is that they use different shape
functions. Moreover, for any particular particle method, say the RKP method,
a wide variety of shape functions can be constructed by using various weight
or window functions. It is important to address the issue of selecting a class
of shape functions, among this wide variety of possible shape functions, that
would yield an efficient approximation of the solution of a particular problem,
or a class of problems.

In this paper, we have assumed that particles are uniformly distributed,
and have considered shape functions that are translation invariant. These
shape functions were first introduced and analyzed in [4,23,24]. Transla-
tion invariant shape functions can also be constructed by following, with
some adjustments, the procedures for constructing shape functions used
in the papers mentioned in the previous paragraph. This will be further
discussed in the next section. Some shape functions, e.g., RKP and MLS shape
functions, can be defined for non-uniformly as well as uniformly distributed
particles, but they are, in general, not translation invariant. We will refer to
such shape functions as standard particle shape functions, e.g., standard RKP
shape functions. We note, however, that for uniformly distributed particles,
the shape functions, e.g., RKP shape functions, are translation invariant in the
interior of the domain, sufficiently away from the boundary, of the underly-
ing problem. But, they are translation invariant over the entire domain when
the domain is R

n. Though, in this paper, we primarily discuss the translation
invariant shape functions, we will often make comments on standard RKP
shape functions.

We have presented the following results and observations in this paper:

• A procedure for choosing a class of translation invariant particle shape
functions, among a given collection of such classes, has been proposed.
This choice of shape functions will yield the smallest value for the usual
Sobolev norm of the “interpolation” error, when the interpolated
function is included in a Sobolev space of high order (i.e., when the
function is smooth). This information is relevant for the selection of shape
functions; it was shown in [5,6] that the selection of efficient shape
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functions depends strongly on the function space inclusions of the approx-
imated function. This selection procedure is primarily based on Theorem
3.1.

• In certain situations, interpolation error estimates do not indicate the
correct order of convergence of the approximation error, and is pessimistic.

• For translation invariant shape functions, the interpolation error (for smooth
functions) may decrease at a higher rate, in the pre-asymptotic range, than
is predicted by the theory.

• The performances of translation invariant shape functions and standard
RKP shape functions have been compared in the context of interpolation
and projection. It was observed that standard RKP shape functions may
yield erratic error behavior near the boundary.

We did not consider the imposition of Dirichlet boundary conditions.
Hence our analysis is relevant to boundary value problems on R

n, or on a
bounded domain with Neumann boundary conditions. We note that imposi-
tion of the Dirichlet boundary conditions in particle methods is not easy in
higher dimensions [13]; some work has been done in this area (see [7],[22] and
the references in [26]). Also, we did not consider implementational aspects
of particle methods.

Some of the results in Section 3 of this paper will also appear in [8]. In
this paper, we have not included proofs of the results that appeared in the
complete form in [8].

We now present some notions and notations that will be used throughout
this paper. We will consider multi-indices α = (α1, α2, . . . , αn), which are
ordered collections of non-negative integers, αi . For any x = (x1, x2, . . . , xn)

∈ R
n, multi-index α, and a function u, we write

|α| =
n∑

i=1

αi, α! = α1!α2! · · · αn!, xα = x
α1
1 x

α2
2 · · · xαn

n ,

Dαu = ∂ |α|u
∂x

α1
1 . . . ∂x

αn
n

.

For a domain � ⊂ R
n, we denote the usual Sobolev space by Hk(�); for

u ∈ Hk(�), the norm is

‖u‖2
k,� =

∑

|α|≤k

∫

�

|Dαu|2 dx,

and the semi-norm is

|u|2k,� =
∑

|α|=k

∫

�

|Dαu|2 dx.
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We also use, for a vector valued function �u,

‖�u‖2
0,� =

∫

�

�u · �u dx.

We briefly describe the organization of this paper. In Section 2, we discuss
translation invariant shape functions, together with an example. In Section
3, we discuss interpolation by these shape functions in a bounded domain,
and present the main theoretical result (Theorem 3.1). In Section 4, we pro-
pose a procedure for choosing efficient shape functions, and numerically
test its validity in the case of interpolation. In Section 5, we numerically
compare the approximation error with interpolation error, and also show that
the interpolation error may decrease at a higher rate (than predicted) in the
pre-asymptotic range. In Section 6, we compare the performance of transla-
tion invariant shape functions with standard RKP shape functions.

2 Particle shape functions

Let

Z
n ≡ {j = (j1, j2, . . . , jn) : j1, . . . , jn integers}

be the integer lattice, and define, for 0 < h ≤ 1,

xh
j ≡ {(j1h, . . . , jnh) = hj, where j = (j1, . . . , jn) ∈ Z

n}.

We refer to the xh
j ’s as uniformly distributed particles in R

n. We often
construct shape functions as follows: Let φ(x) ∈ Hq(Rn), where q > n

2
and q ≥ 1, be a function with compact support and suppose

η ≡ supp φ(x) ⊂ BR(0) = {x : ‖x‖ < R},
where ‖ · ‖ is the Euclidean norm on R

n. We note that φ(x) is a continuous
function. We assume that 0 ∈ η

◦
(interior of η). The function φ is called the

basic shape function. Then, for j ∈ Z
n, we define

φh
j (x) = φ

(x

h
− j

)
.(2.1)

It is immediate that

ηh
j ≡ supp φh

j (x) ⊂ BRh(x
h
j ) = {x : ‖x − xh

j ‖ < Rh}.

Note that xh
j ∈ ηh◦

j · φh
j is called the particle shape function associated with

the particle xh
j (and the basic shape function φ). We note, however, that there

are other ways to construct particle shape functions.
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We first observe that the uniformly distributed particles satisfy xh
j+i =

xh
j + xh

i , and the associated particle shape functions are translation invariant
in the sense that

φh
j+i (x) = φh

j (x − xh
i );

in the sequel, these shape functions will be referred to as translation invari-
ant particle shape function. Moreover, from a standard scaling argument, we
have

‖φh
j ‖1,Rn ≤ hn/2−1‖φ‖1,Rn .(2.2)

The basic shape function φ(x) is called Quasi-Reproducing of order k if
for any multi-index α = (α1, α2, . . . , αn), with |α| ≤ k,

∑

j∈Zn

jαφ(x − j) = λ xα + qα(x), for all x ∈ R
n,(2.3)

where λ 	= 0 and qα(x) is a polynomial with degree < |α|. If (2.3) holds
with λ = 1 and qα(x) = 0, then the basic shape function φ(x) is called
Reproducing of order k.

If φ(x) is quasi-reproducing of order k (respectively reproducing of order
k), then equivalently, the corresponding particle shape functions {φh

j } are also
quasi-reproducing of order k (respectively reproducing of order k), i.e., for
|α| ≤ k,

∑

j∈Zn

(xh
j )αφh

j (x) = λ xα + q̄α
h (x), for all x ∈ R

n,(2.4)

where λ 	= 0 and q̄α
h (x) = h|α|qα(x/h) (respectively, (2.4) holds with λ = 1

and q̄α
h (x) = 0). We note that {φh

j } are reproducing of order k if and only if

∑

j∈Zn

p(xh
j )φh

j (x) = p(x), for all p ∈ Pk(Rn),(2.5)

where Pk(Rn) is the space of polynomials of degree ≤ k. We remark that in
assuming (2.3) (or (2.4)), we have implicitly assumed that ∪j∈Z

nηh◦
j = R

n.
The basic shape function φ(x) (and consequently the corresponding par-

ticle shape functions φh
j (x)) is called Strongly r-Reproducing of order k, for

1 ≤ r ≤ k + 1, if φ(x) is reproducing of order k, and

(a) q(x) 	=
∑

j∈Zn

q(j)φ(x − j)

(2.6)
(b) q(x) −

∑

j∈Zn

q(j)φ(x − j) 	∈ P r−1(Rn)
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for any polynomial q(x) of degree (k + 1). For r = 0, the definition of
strongly r-reproducing shape functions of order k does not include item (b)
in (2.6). We note that in 1-d, if the basic shape function φ(x) is reproducing of
order k and not quasi-reproducing of any higher order, then φ(x) is strongly
r-reproducing of order k, for all 0 ≤ r ≤ k + 1.

Examples of particle shape functions reproducing of order k

Various types of particle shape functions are used in practice; e.g., RKP shape
functions and MLS particle shape functions, as mentioned in Section 1. We
briefly describe RKP shape functions. We first describe translation invariant
RKP shape functions.

Let ω(x) ≥ 0 be a continuous function with

η ≡ supp ω(x) = BR(0).

The function ω(x) is called a weight function (or window function). For each
particle xh

j , we associate the weight function ωh
j (x) defined by

ωh
j (x) = ω

(
x − xh

j

h

)
= ω

(x

h
− j

)
.

For a given positive integer k, the RKP shape function φh
j (x), associated with

the particle xh
j , is defined by

φh
j (x) = ωh

j (x)
∑

|α|≤k

(x − xh
j )αbh

α(x),(2.7)

where the bh
α(x) are chosen so that
∑

j∈Zn

p(xh
j )φh

j (x) = p(x), for all p ∈ Pk(Rn).(2.8)

This gives rise to a linear system in bh
α(x), namely

∑

|α|≤k

mh
α+β(x)bh

α(x) = δ|β|,0, for |β| ≤ k,(2.9)

where

mh
α(x) =

∑

j∈Zn

ωh
j (x)(x − xh

j )α,(2.10)

and δ|β|,0 is the Kronecker delta. For sufficient conditions to ensure unique
solvability of (2.9), see [13].
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If we let φ(x) = φh
0 (x) with h = 1, then φh

j (x) satisfies (2.1), i.e.,
φh

j (x) = φ(x
h
− j) (see [8]). Thus RKP shape functions φh

j (x) (cf. (2.7)), are
particle shape functions associated with particles xh

j , and they are translation
invariant and reproducing of order k. We will refer to them as translation
invariant RKP shape functions.

The construction of RKP shape functions as given in [13], for uniformly
distributed particles, is slightly different than described above in (2.7)–(2.10),
and is usually done in the context of a bounded domain � ⊂ R

n. These shape
functions φh

j (x) are defined as in (2.7), but only for j ∈ A�, where

A� = {j ∈ Z
n : xh

j ∈ �̄},
and (2.8) and (2.10) are replaced by

∑

j∈A�

p(xh
j )φh

j (x) = p(x), for all p ∈ Pk(�)(2.11)

and

mh
α(x) =

∑

j∈A�

ωh
j (x)(x − xh

j )α,(2.12)

respectively. By Pk(�) we mean polynomials of degree ≤ k restricted to
�, and hence (2.11) is required to hold only for x ∈ �. Thus, only the
particles that are contained in �̄ are used in the construction of φh

j (x). Note
that these shape functions only “reproduce” polynomials of degree ≤ k

in �, and they are not translation invariant. We will refer to these shape
functions as standard RKP shape functions throughout this paper. We remark
that for uniformly distributed particles, the standard RKP shape functions
(constructed with respect to �) corresponding to the particles in �0 ⊂ �,
where �0 is sufficiently away from ∂�, are translation invariant with respect
to the particles in �0. We further remark that standard RKP shape functions
are same as translation invariant RKP shape functions when � = R

n.
We note that the RKP shape functions, translation invariant or standard,

depend on the weight function ω(x). Other particle shape functions, which
we have not described here, also depend on such weight functions. The com-
monly used weight functions in 1-d are:

(a) Gaussian weight function:

ω(x) =





eδ(x/R)2 − eδ

1 − eδ
, |x| ≤ R,

0, |x| ≥ R,

(2.13)

where δ > 0;
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(b) Cubic spline weight function:

ω(x) =





2
3 − 4(x/R)2 + 4(|x|/R)3, |x| ≤ R/2,

4
3 − 4(|x|/R) + 4(x/R)2 − 4

3(|x|/R)3, R/2 ≤ |x| ≤ R,

0, |x| > R;

(2.14)

(c) Conical weight function:

ω(x) =
{

[1 − (x/R)2]l , |x| ≤ R,

0, |x| > R,
(2.15)

where l = 1, 2 . . ..
We note that one may consider non-symmetric versions of some of these
weight functions, as was done in [2].

In higher dimension, the weight function ω(x) can be constructed from the
one dimensional weight function ω(x) as ω(x) = ω(‖x‖), where ‖x‖ is the
Euclidean length of x, or as ω(x) = ∏n

i=1 ω(xi), where x = (x1, x2, . . . , xn).
We now introduce some notation that will be used in this paper. Let Ih

j be
a cell centered at the particle xh

j , given by

Ih
j = {x : ‖x − xh

j ‖∞ ≡ max
i=1,...,n

|xi − xh
ji
| ≤ h/2},

where xh
ji

is the ith coordinate of xh
j . For each Ih

j , we define

Ah
j = {m ∈ Z

n : ηh◦
m ∩ Ih

j 	= ∅}
and

Bh
j = {∪m∈Ah

j
BRh(x

h
m)} ∪ Ih

j .

The cardinality of Ah
j is finite, and is bounded independent of j and h. Also

there exists R̄ > 0, independent of j and h, such that Bh
j ⊂ B̃h

j ≡ BR̄h(x
h
j ).

3 Interpolation by translation invariant particle shape functions
in a bounded domain in R

n

Let � ⊂ R
n be a bounded domain with Lipschitz continuous boundary.

Let {xh
j } be the set of uniformly distributed particles in R

n, and consider the
associated translation invariant particle shape functions {φh

j }, which we
assume to be reproducing of order k. In this section, we will consider a
smooth function u(x) defined in � and study the interpolation error between
u and Ĩhu, where Ĩhu is the “interpolant” of u in terms of φh

j .
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We first define the interpolant Ĩhu, when u is defined on R
n, as follows:

(Ĩhu)(x) =
∑

j∈Zn

u(xh
j )φh

j (x).

It is immediate that this definition can be stated as

(Ĩhu)(x) =
∑

j∈Ah
x

u(xh
j )φh

j (x),(3.1)

where

Ah
x = {j ∈ Z

n : x ∈ η◦h
j }

is the influence set of x. If p ∈ Pk(Rn), then p(xh
j ) is defined for all j , and

from (2.5) we have,
∑

j∈Ah
x

p(xh
j )φh

j (x) =
∑

j∈Zn

p(xh
j )φh

j (x) = p(x), for all x ∈ R
n,

i.e., Ĩhp = p. In (3.1) we only need that u(xh
j ) is defined for all j ∈ Ah

x .
Now, let u ∈ Hs(�), with s > n/2. For some x ∈ �, the particles xh

j

for j ∈ Ah
x may be outside �, and u(xh

j ) is not defined. To define Ĩhu(x)

in this situation, we need an extension ū of u to an open ball BR0 , with R0

sufficiently large, satisfying ū ∈ Hs(BR0). Then we define

(Ĩhu)(x) ≡ (Ĩhū)(x) =
∑

j∈Ah
x

ū(xh
j )φh

j (x), for all x ∈ BR0−Rh,(3.2)

where we assume that � ⊂ BR0−Rh. For an extension ū, when u ∈ Hs(�)\
Pk+1(�), we may use ū = Eu, where E : L2(�) → L2(BR0) is an extension
operator satisfying Eu|� = u for all u ∈ L2(�), such that, if u ∈ Hm(�),
then Eu ∈ Hm(BR0) and

‖ū‖Hm(BR0 ) = ‖Eu‖Hm(BR0 ) ≤ Cm‖u‖Hm(�), m = 0, 1, · · · .(3.3)

The existence of such an operator is well known (see [21]). When u ∈
Pk+1(�), we use ū = u, i.e., ū is its own extension. Because of finite
dimensionality of polynomials of degree k + 1, (3.3), with Eu replaced by
ū, is also satisfied in this situation. Thus (Ĩhu)(x), for x ∈ �, will depend on
several values ū(xh

j ), where the particle xh
j is just outside �. We note that Ĩhu

is not an interpolant of u in the usual sense, since, generally, φh
i (xh

j ) 	= δij ,

and therefore (Ĩhu)(xh
j ) 	= u(xh

j ). We further note that Ĩhu depends on the

extension of u, and since there are many possible extensions, Ĩhu is not
unique. But once a particular extension ū of u is chosen, Ĩhu is unique. Ĩh is
not linear in u but is linear in ū.
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In this section, we will investigate the interpolation error ‖u − Ĩhu‖1,�.
Towards this end, we define the function

ξh
α (x) ≡ xα − Ĩh(x

α)

= xα −
∑

i∈Zn

(xh
i )αφh

i (x), |α| = k + 1;(3.4)

we will also use

ξα(x) ≡ ξ 1
α(x) = xα −

∑

i∈Zn

iαφ(x − i), |α| = k + 1.

In 1-d, we will write these functions as ξh
k+1(x) and ξk+1(x), respectively.

We begin with certain results about these functions.

Lemma 3.1 ξh
α (x), with |α| = k + 1, is periodic, i.e.,

ξh
α (x + xh

j ) = ξh
α (x), for any xh

j for all x ∈ R
n.(3.5)

The proof of this result was given in [8]; we do not repeat it here. We note,
however, that this result plays a central role in the analysis presented in this
section.

We note that using h = 1 in Lemma 3.1, we have

ξα(x + j) = ξα(x), for any j ∈ Z
n.

Lemma 3.2 Let α = α(i), i = 1, · · · , Mk, be an enumeration of the multi-
index α with |α(i)| = k + 1. Let Ih

j be the cell centered at the particle xh
j .

Then, for dα ∈ R, we have
∥∥∥∥∥∥

∑

|α|=k+1

1

α!
dαξh

α (x)

∥∥∥∥∥∥

2

1,Ih
j

= h2k+n
V

T (A + h2B)V,(3.6)

where V = [dα(1), dα(2), . . . , dα(Mk)]
T and A, B are Mk ×Mk matrices given

by

Alm =
∫

I

1

α(l)!α(m)!
∇ξα(l) · ∇ξα(m) dx,(3.7)

Blm =
∫

I

1

α(l)!α(m)!
ξα(l)ξα(m) dx,(3.8)

respectively, and I = [−1/2, 1/2]n.

The proof of this result was given in [8]; we do not repeat it here.

Remark 3.1 In 1-d, (3.6) reduces to

‖ξh
k+1‖2

1,Ih
j

= h2k+1

[∫ 1/2

−1/2
(ξ ′

k+1)
2 dy + h2

∫ 1/2

−1/2
ξ 2
k+1 dy

]
.(3.9)
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Remark 3.2 We note that if ξα(x) = Cα, where Cα is a constant (for |α| =
k + 1), then the matrix A is the zero matrix. Also the matrix B is zero matrix
if ξα(x) = 0 (for |α| = k + 1), i.e., if the shape functions are reproducing of
order (k + 1).

Remark 3.3 We note that the matrix A is positive semi-definite, and its small-
est eigenvalues may be 0. But if the basic shape function φ(x) is strongly
r-reproducing of order k with r = 1, then A is positive-definite. To briefly
see this, let V = {dα} be a non-zero vector in R

Mk . Then

V
T AV =

∥∥∥∥∥∥

∑

|α|=k+1

1

α!
dα∇ξα

∥∥∥∥∥∥

2

0,I

,(3.10)

where I = [−1/2, 1/2]n. Suppose V
T AV = 0. Then

∑

|α|=k+1

1

α!
dαξα = q(x) −

∑

j∈Zn

q(j)φ(x − j) = C,

where q(x) = ∑
|α|=k+1

1
α!dαxα is a polynomial of degree (k + 1) and C is a

constant. This is a contradiction, since it violates (2.6). Therefore V
T AV 	= 0,

which implies that A is positive definite.

Remark 3.4 The matrix B is also positive semi-definite. But if the basic shape
function φ(x) is strongly r-reproducing of order k with r = 0, then we can
also show, as in Remark 3.3, that B is positive definite.

Lemma 3.3 Let Ih
j be the cell centered at the particle xh

j , and consider the

corresponding set B̃h
j . Suppose u ∈ Hk+2+q(B̃h

j ), with q > n
2 , n ≥ 2. Then,

(a) for any δ > 0,

‖u − Ĩhu‖2
1,Ih

j

≤ (1 + δ2)

∥∥∥∥∥∥

∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)

∥∥∥∥∥∥

2

1,Ih
j

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαu‖2
q,B̃h

j

;(3.11)

(b) for any δ > 0,
∥∥∥∥∥∥

∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)

∥∥∥∥∥∥

2

1,Ih
j

≤ (1 + δ2)‖u − Ĩhu‖2
1,Ih

j

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαu‖2
q,B̃h

j

.

(3.12)
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Note: The particles xh
j considered in this lemma are such that B̃h

j ⊂ BR0 .
Also, the function u should be thought of as the extended function ū to BR0 .

Proof. (a) Let x ∈ Ih
j . Since u ∈ Hk+2+q(B̃h

j ), with q > n
2 , from Sobolev’s

inequality (|v(x)| ≤ C‖v‖q,B̃h
j
) we know that Dαu(x), for |α| ≤ k + 2, has

point values in B̃h
j . Therefore from Taylor’s theorem, we have

u(x) =
∑

|α|≤k

1

α!
(Dαu)(xh

j )(x − xh
j )α

+
∑

|α|=k+1

1

α!
(Dαu)(xh

j )(x − xh
j )α + Rk+1u(x),(3.13)

where

Rk+1u(x) = (k + 2)
∑

|α|=k+2

(x − xh
j )α

×
∫ 1

0

sk+1

α!
(Dαu)(x + s(xh

j − x)) ds.(3.14)

We first note that, using the translation invariance of {φh
i },

Ĩh(x − xh
j )α =

∑

i∈Zn

(xh
i−j )

αφh
i (x) =

∑

i∈Zn

(xh
i )αφh

i (x − xh
j ),

and therefore, using the definition of ξh
α and (3.5),

(x − xh
j )α − Ĩh(x − xh

j )α = ξh
α (x − xh

j )

= ξh
α (x), for |α| = k + 1.(3.15)

Since, Ĩhp = p for p ∈ Pk, we have

(x − xh
j )α − Ĩh(x − xh

j )α = 0, for |α| ≤ k.

Therefore, using (3.13) and (3.15), we have

(3.16)

u(x) − Ĩhu(x)

=
∑

|α|≤k

1

α!
(Dαu)(xh

j )
[
(x − xh

j )α − Ĩh(x − xh
j )α
]

+
∑

|α|=k+1

1

α!
(Dαu)(xh

j )
[
(x − xh

j )α − Ĩh(x − xh
j )α
]

+Rk+1u(x) − ĨhRk+1u(x)

=
∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x) + Rk+1u(x) − ĨhRk+1u(x), for all x ∈Ih

j .
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Thus,

‖u − Ĩhu‖1,Ih
j

≤ ‖
∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)‖1,Ih

j

+ ‖Rk+1u‖1,Ih
j

+ ‖ĨhRk+1u‖1,Ih
j
.(3.17)

We will now find upper bounds for the terms in the right hand side of this
inequality.

Since Rk+1v = 0 for all v ∈ Pk+1(I h
j ), using a Bramble-Hilbert argument

(cf.[10]) one can prove that

‖Rk+1u‖1,Ih
j

≤ Chk+1
∑

|α|=k+2

‖Dαu‖q−1,Ih
j
.(3.18)

From the definition of Ĩh, we have for x ∈ Ih
j ,

ĨhRk+1u(x) =
∑

l∈Ah
j

Rk+1u(xh
l )φh

l (x),

and thus from (2.2),

‖ĨhRk+1u‖1,Ih
j

≤ ‖Rk+1u‖∞,B̃h
j

∑

l∈Ah
j

‖φh
l ‖1,Ih

j

≤ Ch
n
2 −1‖Rk+1u‖∞,B̃h

j
.(3.19)

Now using (3.14) and a scaled Sobolev Inequality, we have

|Rk+1u(x)|
≤ (k + 2)

∑

|α|=k+2

‖x − xh
j ‖|α|

∫ 1

0

sk+1

α!
|(Dαu)(x + s(xh

j − x))| ds

≤ Chk+2
∑

|α|=k+2

h− n
2 ‖Dαu‖q,B̃h

j
, for all x ∈ B̃h

j ,

and therefore,

‖Rk+1u‖∞,B̃h
j

≤ Chk+2− n
2

∑

|α|=k+2

‖Dαu‖q,B̃h
j
.

Thus using the above inequality in (3.19), we get

‖ĨhRk+1u‖1,Ih
j

≤ Chk+1
∑

|α|=k+2

‖Dαu‖q,B̃h
j
.(3.20)



614 I. Babuška et al.

Hence using (3.18) and (3.20) in (3.17) we get,

‖u − Ĩhu‖1,Ih
j

≤
∥∥∥∥∥∥

∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)

∥∥∥∥∥∥
1,Ih

j

+ Chk+1
∑

|α|=k+2

‖Dαu‖q,B̃h
j
,

and therefore for any δ > 0, we have

‖u − Ĩhu‖2
1,Ih

j

≤ (1 + δ2)

∥∥∥∥∥∥

∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)

∥∥∥∥∥∥

2

1,Ih
j

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαu‖2
q,B̃h

j

,

which is (3.11).
(b) Let x ∈ Ih

j . Then from (3.16), we have

∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)

= u(x) − Ĩhu(x) − Rk+1u(x) + ĨhRk+1u(x),

and therefore, using (3.18) and (3.20) we get
∥∥∥∥∥∥

∑

|α|=k+1

1

α!
(Dαu)(xh

j )ξh
α (x)

∥∥∥∥∥∥
1,Ih

j

≤ ‖u − Ĩhu‖1,Ih
j

+ ‖Rk+1u‖1,Ih
j

+ ‖ĨhRk+1u‖1,Ih
j

≤ ‖u − Ĩhu‖1,Ih
j

+ Chk+1
∑

|α|=k+2

‖Dαu‖q,B̃h
j
.

(3.12) follows immediately from this result. ��
Remark 3.5 In 1-d, we have a stronger result: if u ∈ Hk+2(Bh

j ), then

(a) for any δ > 0,

‖u − Ĩhu‖2
1,Ih

j

≤ (1 + δ2)
|u(k+1)(xh

j )|2
(k + 1)!2

‖ξh
k+1‖2

1,Ih
j

+
(

1 + 1

δ2

)
Ch2(k+1)|u|2

k+2,Bh
j

;(3.21)
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(b) for any δ > 0,

|u(k+1)(xh
j )|2

(k + 1)!2
‖ξh

k+1‖2
1,Ih

j

≤ (1 + δ2)‖u − Ĩhu‖2
1,Ih

j

+
(

1 + 1

δ2

)
Ch2(k+1)|u|2

k+2,Bh
j

.(3.22)

We now define certain sets, associated with the particles and �, which
will be used in our next result, which is the main result of this section.
Let Ih

j be the cell centered at xh
j , as in Section 2. Recall from Section 2

that, corresponding to Ih
j , we defined Bh

j = {∪m∈Ah
j
BRh(x

h
m)} ∪ Ih

j , where

Ah
j = {m ∈ Z

n : η◦h
m ∩ Ih

j 	= ∅} and BRh(x
h
m) is the ball of radius Rh centered

at xh
m. We also recall that Bh

j ⊂ B̃h
j = BR̄h(x

h
j ). Define the following sets:

Āh = {m ∈ Z
n : � ∩ I

◦h
m 	= ∅}, �h = ∪j∈ĀhI

h
j

Ah = {m ∈ Z
n : Ih

m ⊂ �}, �h = ∪j∈AhI h
j

Bh = {∪j∈AhB̃h
j } ∪ �, B

h = ∪j∈ĀhB̃
h
j

It is clear that �h ⊂ � ⊂ �h, and |� − �h| → 0, |�h − �| → 0 as h → 0.

Also � ⊂ Bh ⊂ B
h
, and |Bh − �| → 0, |Bh − �| → 0 as h → 0. We also

assume that R0 is such that B
h ⊂ BR0−Rh.

We will now study the interpolation error (u − Ĩhu). An interpolation
error estimate, ‖u − Ĩhu‖1,� ≈ O(hk) was proved in [13,17] for the stan-
dard RKP shape functions; in fact, a more general result, namely, an estimate
for ‖u − Ĩhu‖Wl.q (�) was obtained in [13]. A similar order of convergence
(for error in H 1,∞ norm) was also obtained for MLS shape functions in
[1,2]. We note that the definition of Ĩhu for the standard RKP shape func-
tions and MLS shape functions differs slightly from our definition in (3.2).
Using some of the arguments in the proof of the our next result, we will
obtain an estimate of ‖u − Ĩhu‖1,� in the context of translation invariant
particle shape functions that are reproducing of order k. Moreover, our next
result, which is of asymptotic nature, gives some information on the size of
‖u−Ĩhu‖1,�

hk which will help us to select “good” shape functions; this will be
discussed in Section 4.

Theorem 3.1 Suppose φ is reproducing of order k. Let λ̄ be the largest eigen-
value of the matrix A given in (3.7). Suppose q > n

2 when n ≥ 2, and q = 0
when n = 1. Then, we have

sup
u∈Hk+2+q (�)

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
= λ̄,(3.23)
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where

Qh(u) = |u|2k+1,� + h
∑

|α|=k+2

‖Dαu‖2
q,�.(3.24)

Note: In (3.23), we consider u ∈ Hk+2+q(�) such that u /∈ Pk(�). A sketch
of the proof of Theorem 3.1 appeared in [8]. We here present the complete
proof.

Proof. We will first prove that for u ∈ Hk+2+q(�)\Pk(�),

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
=
∫
�

V T (x)AV (x) dx

|u|2k+1,�

,(3.25)

where

V T (x) = [Dα(1)u(x), Dα(2)u(x), . . . , Dα(Mk)u(x)]

and α(i), 1 ≤ i ≤ Mk, are the multi-indices with |α(i)| = k + 1.
Let u ∈ Hk+2+q(�), and suppose ū = Eu where E is the extension

operator introduced in the beginning of this section. Since � ⊂ �h, we have

‖u − Ĩhu‖2
1,� ≤ ‖ū − Ĩhū‖2

1,�h
=
∑

j∈Āh

‖ū − Ĩhū‖2
1,Ih

j

.

Therefore, using (3.11), (3.6), and recalling that B
h = ∪j∈ĀhB̃

h
j , we get for

any δ > 0,

‖u − Ĩhu‖2
1,� ≤ (1 + δ2)

∑

j∈Āh

∥∥∥∥∥∥

∑

|α|=k+1

1

α!
(Dαū)(xh

j )ξh
α (x)

∥∥∥∥∥∥

2

1,Ih
j

+
(

1 + 1

δ2

)
Ch2k+2

∑

j∈Āh

∑

|α|=k+2

‖Dαū‖2
q,B̃h

j

≤ (
1 + δ2)h2k

∑

j∈Āh

hnV T
j (A + h2B)Vj

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαū‖2
q,B

h,(3.26)

where

V T
j = [Dα(1)ū(xh

j ), Dα(2)ū(xh
j ), . . . , Dα(Mk)ū(xh

j )],

and A, B are the matrices in (3.7) and (3.8), respectively. Dividing (3.26) by
h2kQh(u), where Qh(u) is defined in (3.24), we get
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‖u − Ĩhu‖2
1,�

h2kQh(u)
≤ (1 + δ2)

∑
j∈Āh hnV T

j (A + h2B)Vj

Qh(u)

+(1 + 1

δ2
)Ch2

∑
|α|=k+2 ‖Dαū‖2

q,B
h

Qh(u)
.(3.27)

A typical term of the quadratic form V T
j (A + h2B)Vj is

Dα(i)ū(xh
j )(Ail + h2Bil)D

α(l)ū(xh
j ).

Since

lim
h→0

∑

j∈Āh

hnDα(i)ū(xh
j )AilD

α(l)ū(xh
j ) =

∫

�

Dα(i)u(x)AilD
α(l)u(x) dx

and

lim
h→0

h2
∑

j∈Āh

hnDα(i)ū(xh
j )BilD

α(l)ū(xh
j ) = 0,

we have,

lim
h→0

∑

j∈Āh

hnV T
j (A + h2B)Vj =

∫

�

V T (x)AV (x) dx.(3.28)

Since |Bh − �| → 0 as h → 0, we have

lim
h→0

∑

|α|=k+2

‖Dαū‖2
q,B

h =
∑

|α|=k+2

‖Dαu‖2
q,�.(3.29)

Also limh→0 Qh(u) = |u|k+1,�. Thus, for any δ > 0, using (3.28) and (3.29)
in (3.27), we get

lim sup
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
≤ (1 + δ2)

∫
�

V T (x)AV (x) dx

|u|2k+1,�

,

and, since δ > 0 is arbitrary, we have

lim sup
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
≤
∫
�

V T (x)AV (x) dx

|u|2k+1,�

.(3.30)

We next show that
∫
�

V T (x)AV (x) dx

|u|2k+1,�

≤ lim inf
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
.(3.31)
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Consider a cell Ih
j , j ∈ Ah. From (3.12), we have for any δ > 0,

∥∥∥∥∥∥

∑

|α|=k+1

1

α!
Dαu(xh

j )ξh
α (x)

∥∥∥∥∥∥

2

1,Ih
j

≤ (1 + δ2)‖u − Ĩhu‖2
1,Ih

j

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαū‖2
q,B̃h

j

,

and using (3.6), we get

h2k+nV T
j (A + h2B)Vj

≤ (1 + δ2)‖u − Ĩhu‖2
1,Ih

j

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαū‖2
q,B̃h

j

.

Therefore, recalling that ∪j∈AhI h
j = �h ⊂ �, we have

∑

j∈Ah

h2k+nV T
j (A + h2B)Vj

≤ (1 + δ2)‖u − Ĩhu‖2
1,�h

+
(

1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

∑

j∈Ah

‖Dαū‖2
q,B̃h

j

≤ (1 + δ2)‖u − Ĩhu‖2
1,� +

(
1 + 1

δ2

)
Ch2k+2

∑

|α|=k+2

‖Dαū‖2
q,Bh.

Hence, dividing both the sides by h2kQh(u), we get

∑
j∈Ah hnV T

j (A + h2B)Vj

Qh(u)
≤ (1 + δ2)

‖u − Ĩhu‖2
1,�

h2kQh(u)
+
(

1 + 1

δ2

)

× Ch2

∑
|α|=k+2 ‖Dαū‖2

q,Bh

Qh(u)
.(3.32)

Since

lim
h→0

∑

j∈Ah

hnV T
j (A + h2B)Vj =

∫

�

V T (x)AV (x) dx(3.33)

and

lim
h→0

∑

|α|=k+2

‖Dαū‖2
q,Bh =

∑

|α|=k+2

‖Dαu‖2
q,�,(3.34)
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taking the limit as h → 0 in (3.32), we get, for any δ > 0,
∫
�

V T (x)AV (x) dx

|u|2k+1,�

≤ (1 + δ2) lim inf
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)

and therefore, we have (3.31). Now combining (3.30) and (3.31), we see that

limh→0
‖u−Ĩhu‖2

1,�

h2kQh(u)
exists, and

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
=
∫
�

V T (x)AV (x) dx

|u|2k+1,�

,

which is (3.25).
Since λ̄ is the largest eigenvalue of the matrix A, from the usual variational

characterization of eigenvalues, we have

∫

�

V T (x)AV (x) dx ≤ λ̄

∫

�

Mk∑

i=1

|Dα(i)u(x)|2 dx = λ̄|u|2k+1,�.

Thus from (3.25) we get

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
≤ λ̄, for any u ∈ Hk+2+q(�)\Pk(�).

Hence

sup
u∈Hk+2+q (�)

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
≤ λ̄.(3.35)

Let v̄ = [v1, v2, · · · , vMk
]T be an eigenvector of A corresponding to λ̄. Then

it is easily seen that there is a u ∈ Pk+1 such that the vector V (x) = v̄. For
this particular u, we have

∫
�

V T (x)AV (x) dx

|u|2k+1,�

= λ̄.

Hence, from (3.35) we conclude that

sup
u∈Hk+2+q (�)

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
= λ̄,

which is the desired result. ��
Remark 3.6 We know from (3.2) that the interpolant Ĩhu depends on the
extension ū of u. But it is clear from the proof of Theorem 3.1 that (3.23) is
valid for any extension ū ∈ Hk+2+q(BR0).
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Remark 3.7 We note that same result holds for the H 1-seminorm of the inter-
polation error, i.e., for q > n

2 when n ≥ 2, and q = 0 when n = 1,

sup
u∈Hk+2+q (�)

lim
h→0

|u − Ĩhu|21,�

h2k[|u|2k+1,� + h
∑

|α|=k+2 ‖Dαu‖2
q,�]

= λ̄.

The proof is similar to the proof of Theorem 3.1. We further note that it is
possible to obtain a result involving |u − Ĩhu|s,�, for 1 < s ≤ k + 1. We
have not included a proof of this result in this paper.

Remark 3.8 A result, similar to (3.23), also holds for the L2-norm of the
interpolation error; it is stated as follows: For q > n

2 when n ≥ 2, and q = 0
when n = 1

sup
u∈Hk+2+q (�)

lim
h→0

‖u − Ĩhu‖2
0,�

h2(k+1)[|u|2k+1,� + h
∑

|α|=k+2 ‖Dαu‖2
q,�]

= µ̄,

where µ̄ is the largest eigenvalue of the matrix B, defined in (3.8). The proof
of this result is parallel to the proof of Theorem 3.1.

Remark 3.9 From (3.27) in the proof of Theorem 3.1, we can obtain an inter-
polation error estimate. We briefly show this here. We first note that, using

Sobolev’s inequality, (3.3), and recalling that B
h ⊂ BR0 , we can show that

∑

j∈Āh

hnV T
j (A + h2B)Vj ≤ C

∑

|α|=k+1

‖Dαū‖2
∞,B

h ≤ C‖u‖2
k+1+q,�.

Also from (3.3), we have
∑

|α|=k+2

‖Dαū‖2
q,B

h ≤ C‖u‖2
k+2+q,�.

Now, using these inequalities in (3.27) with δ = 1, and cancelling Qh(u) we
get

‖u − Ĩhu‖1,� ≤ Chk‖u‖k+2+q,�,(3.36)

where C may depend on �, but is independent of u and h. Similarly, we can
show (cf. Remark 3.8) that

‖u − Ĩhu‖0,� ≤ Chk+1‖u‖k+2+q,�.

It is also possible to obtain interpolation error estimates under a weaker
regularity assumption on u. Replacing k by k − 1 in (3.13) and using some
of the arguments in the proof of Theorem 3.1, we can show that

‖u − Ĩhu‖l,� ≤ Chk+1−l‖u‖k+1+q,�, l = 0, 1,(3.37)
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where C may depend on �, but is independent of u and h. We note, however,
that these are not optimal error estimates, but they give the correct order of
convergence. We note that the ideas used to prove (3.37) were also used in
[13] in the context of standard RKP shape functions.

Remark 3.10 From Theorem 3.1 we know that

lim
h→0

‖u − Ĩhu‖2
1,�

h2kQh(u)
≤ λ̄, for all u ∈ Hk+2+q(�),

which can be written

‖u − Ĩhu‖2
1,�

h2kQh(u)
≤ λ̄[1 + o(1)],

where o(1) = ou(1) depends on u. Hence

‖u − Ĩhu‖2
1,� ≤ λ̄[1 + o(1)]h2kQh(u)

≤ λ̄h2k|u|2k+1,� + o(h2k)‖u‖2
k+2+q,�.(3.38)

The right-hand side of (3.38) is written as an asymptotic formula. The impor-
tance of Theorem 3.1 is that it gives the exact form for the dominant term.
We immediately see the relation between (3.38) and the error estimate (3.36)
in Remark 3.9; the constant C in the error estimate would be a number larger
than λ̄. So, assuming the inequality in (3.38) is nearly an equality for small
h, we see that λ̄ provides an accurate indication of the interpolation error.

Remark 3.11 For u ∈ Hk+2+q(�), one can show by carefully following
the proof of (3.25) in the proof of Theorem 3.1, with Qh(u) replaced by
Q(u) = |u|2k+1,� +∑

|α|=k+2 ‖Dαu‖2
q,�, that

lim
h→0

‖u − Ĩhu‖2
1,�

h2k
=
∫

�

V T (x)AV (x) dx,(3.39)

where V T (x) = [Dα(1)u(x), Dα(2)u(x), . . . , Dα(Mk)u(x)], and α(i), 1 ≤
i ≤ Mk are multi-indices with |α(i)| = k + 1. In fact, in 1-d, the matrix A is
a 1 × 1 matrix, A = |ξk+1|21,(0,1)/(k + 1)!2. Thus in 1-d, we get

‖u − Ĩhu‖1,� = |ξk+1|1,(0,1)

(k + 1)!
hk|u|k+1,� + o(1)hk.(3.40)

The same is true if the left hand side of the above equality is replaced with
the semi-norm |u − Ĩhu|1,�.

We now prove a saturation theorem. Such theorems play an important role
in approximation theory, and they can also serve as a basis for the verification
of the implementation codes, as h → 0.
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Theorem 3.2 Consider shape functions that are strongly r-reproducing of
order k with r = 1. Let u be sufficiently smooth in � and suppose

‖u − Ĩhu‖1,� ≤ Chk+ε, ε > 0,

where C = Cu may depend on u but is independent of h. Then u is a polyno-
mial of degree k in �.

Proof. For a smooth function u, we know from (3.39) that

‖u − Ĩhu‖2
1,�

h2k
=
∫

�

V T (x)AV (x) dx + o(1),

where V T (x) = [Dα(1)u(x), Dα(2)u(x), . . . , Dα(Mk)u(x)] and α(i), 1 ≤ i ≤
Mk are the multi-indices such that |α(i)| = k + 1. Now, if u is such that
‖u − Ĩhu‖1,� ≤ Chk+ε , then from the above equality we have

∫

�

V T (x)AV (x) dx = 0.(3.41)

From the variational characterization of eigenvalues we have

λ|u|2k+1,� ≤
∫

�

V T (x)AV (x) dx,

where λ is the smallest eigenvalue of A. Since the shape functions are strongly
r-reproducing of order k with r = 1, we know, as observed in Remark 3.3,
that λ > 0. Thus from (3.41), we get |u|k+1,� = 0 , which implies that u is a
polynomial of degree k in �. ��

We note that, for strongly r-reproducing shape functions of order k with
r = 0, we can prove an analogous saturation theorem for ‖u − Ĩhu‖0,�,
which we have not presented in this paper. We further note that strongly
r-reproducing shape functions of order k with r = s will be required to
prove a saturation theorem for ‖u − Ĩhu‖s,�, 1 < s ≤ k + 1; we have not
included such results in this paper.

4 Selection of shape functions

We have seen in the Section 3 (cf. Remark 3.9) that if the translation
invariant particle shape functions are reproducing of order k, then for a smooth
function u,

‖u − Ĩhu‖1,� ≤ Chk,

where Ĩhu is the interpolant of u, as defined in (3.2) in terms of these shape
functions. There are many classes of translation invariant shape functions that
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are reproducing of order k. We saw in Section 2 that translation invariant RKP
shape functions depend on the weight function ω(x), and different choices of
ω(x) generate different classes of RKP shape functions that are reproducing
of order k. Suppose we have finitely many classes of shape functions, which
are reproducing of order k, at our disposal. Then it is important to select
among them a particular class of shape functions that will yield small values
for ‖u − Ĩhu‖1,�, for a wide class of functions u.

From (3.23) (also see Remark 3.10), we know that for all u ∈ Hk+2+q(�)

with q > n/2,

Rh(u, φ) ≡ ‖u − Ĩhu‖1,�

hk
√

Qh(u)
�
√

λ̄, for small h,(4.1)

where the interpolant Ĩhu is in terms of the shape functions corresponding
to the basic shape function φ, and λ̄ is the largest eigenvalue of the matrix
A given in (3.7). From Remark 3.7, we can also replace the numerator of
the left-hand side of (4.1) by |u − Ĩhu|1,�. We note that λ̄ depends only on
the basic shape function φ(x); we write λ̄(φ) to indicate this dependence.
We emphasize that λ̄(φ) does not depend on u or on h. Moreover, λ̄(φ) is
computable. We will use (4.1) to rank the approximation qualities of various
classes of translation invariant shape functions. Specifically, given a finite
collection of different classes of shape functions, we will rank them accord-
ing to the size of λ̄(φ), and we will choose the class that yields the smallest
value of λ̄(φ).

Remark 4.1 Let S = {φ} be a finite collection of basic shape functions that
are reproducing of order k, and let φ∗ ∈ S be such that λ̄(φ∗) < λ̄(φ) for all
φ ∈ S, φ 	= φ∗. The selection process, described above, does not guarantee
that, for each u ∈ Hk+2+q(�) with q > n/2, Rh(u, φ∗) ≤ Rh(u, φ) for all
φ ∈ S. It only ensures that Rh(u, φ∗) �

√
λ̄(φ∗) for any u ∈ Hk+2+q(�)

for sufficiently small h. Moreover, there exists u0 ∈ Hk+2+q(�) such that√
λ̄(φ∗) < Rh(u0, φ) for h small enough.

We now show this ranking numerically in 1-d. We note that in 1-d, λ̄ =( |ξk+1|1,(0,1)

(k+1)!

)2
. In the rest of this paper, we suppress (0, 1) in |ξk+1|1,(0,1) and

instead write |ξk+1|1. We have considered ω(x) given in (2.13) with δ = 2,
(2.14), and (2.15) with l = 2, 4, and constructed the corresponding trans-
lation invariant RKP shape functions that are reproducing of order k = 1.
We then computed the quantity |ξ2|1, corresponding to each class of shape
functions (for these choices of ω(x)), for different values of R. The results
are shown in Figure 4.1.
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Fig. 4.1. The plot of |ξ2|1 with respect to the radius of the support, R, of the weight
function ω(x). Four different weight functions have been used

From Figure 4.1, we infer the following regarding the interpolation of
smooth functions by translation invariant RKP shape functions that are repro-
ducing of order 1:

• The value of |ξ2|1 depends on the value of R, and therefore the selection
of shape functions should depend on R.

• For a fixed value of R, we compare the values |ξ2|1, and choose the shape
function that leads to the smallest value of |ξ2|1. For example, when R =
1.7, the values of |ξ2|1 are 0.237, 0.203, 0.095, and 0.029 for ω(x) given
by (2.15) with l = 2, (2.13) with δ = 2, (2.14), and (2.15) with l = 4,
respectively. Therefore, when R = 1.7, we propose to choose shape func-
tions corresponding to the conical weight function with l = 4. Similarly,
when R = 2, we propose to choose shape functions corresponding to the
cubic spline weight function; this choice is clearly indicated in Figure 4.1.

To validate our proposal for the selection of the shape functions, we have
considered the function u(x) = x4 on the interval � = (0, 1) and com-
puted the error |u − Ĩhu|1,�, where Ĩhu is the interpolant of u as defined in
(3.2) with h = 1/n, n = 40, 50, . . . , 100. We recall that the definition of
Ĩhu requires the values of u(x) outside the interval �. First, we consider the
natural analytic extension of u, i.e., consider u to be x4 outside �. We have
considered the translation invariant RKP shape functions φh

i corresponding
to the weight functions ω(x) used in Figure 4.1. We summarize the results in
Table 4.1.
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Table 4.1. The H 1-seminorm of the error, |u − Ĩhu|1,�, where Ĩhu is the interpolant of
u(x) = x4 using the translation invariant shape functions that are reproducing of order 1,
corresponding to various weight functions ω(x). The radius of support of ω(x) is R = 1.7

|u − Ĩhu|1,�
n

Conical: l = 2 Gauss: δ = 2 Cubic Spline Conical: l = 4

40 1.607e-2 1.376e-2 6.435e-3 2.283e-3

50 1.281e-2 1.096e-2 5.130e-3 1.730e-3

60 1.066e-2 9.112e-3 4.267e-3 1.396e-3

70 9.126e-3 7.800e-3 3.653e-3 1.172e-3

80 7.980e-3 6.819e-3 3.194e-3 1.012e-3

90 7.090e-3 6.058e-3 2.838e-3 8.908e-4

100 6.379e-3 5.449e-3 2.553e-3 7.962e-4

From Table 4.1 and Figure 4.1, it is clear that the error |u− Ĩhu|1,� can be
ranked according to the size of |ξ2|1 for the four choices of ω(x) considered
here with R = 1.7; the error and |ξ2|1 are both minimum when ω(x) is the
conical weight function with l = 4.

From (3.40) of Remark 3.11 (replacing ‖u − Ĩhu‖1,� by |u − Ĩhu|1,�),
we know that for � = (0, 1) and k = 1,

lim
h→0

|u − Ĩhu|1,�

h|u|2,�

= |ξ2|1
2!

(4.2)

for all smooth function u. A simple calculation of the ratio κ = 2|u−Ĩhu|1,�

h|u|2,�
,

using the values in the Table 4.1, shows that κ → |ξ2|1 as h gets smaller, for
each ω(x) considered in Table 4.1, which illustrates (4.2).

We know that Ĩhu depends on the extension of u outside the interval
� = (0, 1). We now extend u = x4 outside � to a small neighborhood of �

as follows:

u(x) =





0, x ≤ 0,

x4, 0 ≤ x ≤ 1,

g(x), x ≥ 1,

(4.3)

where

g(x) = 130

3
e(1−x) − 104e2(1−x) + 86e3(1−x) − 73

3
e4(1−x).

We note that u(3)(x) of the extended function u(x) is continuous. We have
computed |u − Ĩhu|1,� where u = x4 has been extended as (4.3) outside
� = (0, 1) to a small neighborhood of �.
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Table 4.2. The H 1-seminorm of the error, |u − Ĩhu|1,�, where Ĩhu is the interpolant of
u(x) = x4 using the translation invariant shape functions that are reproducing of order
1, corresponding to different weight functions w(x). The radius of support of w(x) is
R = 1.7. The function u has been extended outside � = (0, 1) as in (4.3)

|u − Ĩhu|1,�
n

Conical: l = 2 Gauss: δ = 2 Cubic Spline Conical: l = 4

40 1.606e-2 1.375e-2 6.437e-3 2.278e-3

50 1.281e-2 1.096e-2 5.131e-3 1.728e-3

60 1.066e-2 9.112e-3 4.267e-3 1.395e-3

70 9.125e-3 7.800e-3 3.653e-3 1.172e-3

80 7.979e-3 6.819e-3 3.194e-3 1.012e-3

90 7.090e-3 6.058e-3 2.838e-3 8.906e-4

100 6.379e-3 5.449e-3 2.553e-3 7.960e-4

We see that the values of |u − Ĩhu|1,� in the Table 4.2 are very close to
the corresponding values in the Table 4.1, and hence, the particular extension
of u outside � = (0, 1) does not affect the error significantly. This observa-
tion illustrates Remark 3.6. In the rest of the numerical experiments in this
paper, we will always analytically extend the function u outside �, to a small
neighborhood of �, when computing Ĩhu.

Our proposal of ranking and selecting shape functions is based on The-
orem 3.1, and thus on the interpolation of smooth functions. But we have
observed from further computations (not presented here) that the same selec-
tion process, based on the size of |ξ2|1, is also valid for the L2 and H 1

projections. A detailed analysis of the selection procedure with respect to
these projections will be addressed in a forthcoming paper.

So far we have shown that our process of selection and ranking of shape
functions, which is based on the size of |ξ2|1, is successful when we use
translation invariant shape functions. It is of interest to test this process on
shape functions that are not translation invariant, e.g., standard RKP shape
functions that are defined by (2.7), (2.11), (2.9), and (2.12). We recall that
our proposed selection process is based on Theorem 3.1 where translation
invariant shape functions were used. We present the error |u− Ĩhu|1,� where
u(x) = x4 is defined on � = (0, 1), and Ĩhu(x) is the interpolant of u

using standard RKP shape functions that reproduce polynomials of degree
k = 1. These shape functions correspond to the weight functions considered
in Figure 4.1.

The Table 4.3 and Figure 4.1 clearly shows that our procedure of selec-
tion of the shape function is also valid for standard RKP shape functions.
Also a comparison of Tables 4.1 and 4.3 shows that the values in Table 4.3
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Table 4.3. The H 1-seminorm of the error, |u − Ĩhu|1,�, where Ĩhu is the interpolant
of u(x) = x4 using the standard RKP shape functions that are reproducing of order 1,
corresponding to various weight functions w(x). The radius of support of w(x) is R = 1.7

|u − Ĩhu|1,�
n = 1

h Conical: l = 2 Gauss: δ = 2 Cubic Spline Conical: l = 4

40 1.906e-2 1.749e-2 1.139e-2 9.739e-3

50 1.480e-2 1.345e-2 8.480e-3 7.023e-3

60 1.207e-2 1.089e-2 6.688e-3 5.379e-3

70 1.018e-2 9.132e-3 5.487e-3 4.295e-3

80 8.801e-3 7.855e-3 4.633e-3 3.535e-3

90 7.745e-3 6.886e-3 3.998e-3 2.979e-3

100 6.914e-3 6.127e-3 3.508e-3 2.557e-3

are bigger than the corresponding values in Table 4.1, suggesting that the
performance of translation invariant RKP shape functions may be better than
the performance of standard RKP shape functions. In fact, we will show in
Section 6 that standard RKP shape functions give rise to a boundary layer,
where as translation invariant shape functions do not show such behavior.

Thus we conclude that if we have to choose a basic shape function from a
collection of basic shape functions that are reproducing of order k, we should
choose the basic shape function that yields the smallest value of |ξk+1|1.
Our computations suggest that such a choice of basic shape function (and
the corresponding translation invariant particle shape functions) will give
the smallest interpolation error |u − Ĩhu|1,� among all the available shape
functions. Moreover, the computations also suggest that, for uniformly dis-
tributed particles, the standard RKP shape functions can also be selected
based on the size of |ξk+1|1. We note that, though the computational exam-
ples presented in this section are 1-dimensional, the selection process is also
valid in higher dimensions since the results in Section 3 are true in R

n.

5 Approximation by translation invariant shape functions

We have seen in Section 3 (cf. Remark 3.9) that for u smooth,

‖u − Ĩhu‖l,� ≤ Chk+1−l , l = 0, 1,(5.1)

where Ĩhu is the interpolant of u, defined using particle shape functions φh
i

that are reproducing of order k. From this interpolation error estimate, one
immediately obtains an approximation error estimates:

inf
φ∈Sh

‖u − φ‖l,� ≤ ‖u − Ĩhu‖l,� ≤ Chk+1−l , l = 0, 1,(5.2)



628 I. Babuška et al.

where Sh = span{φh
i }, i ∈ Ah = {i ∈ Z

n : η◦i
h ∩ � 	= ∅}. Such approxima-

tion error estimates are important in assessing the accuracy of approximate
solutions of boundary value problems obtained from the Galerkin method
using particle shape functions, under the assumption that all the integrals in
the Galerkin method are evaluated exactly. In this paper, we did not study the
effect of the perturbation of these integrals (by numerical integration) on the
accuracy of approximate solutions.

We note, however, that the interpolation error estimate – which is based on
the reproducing property of shape functions – may give pessimistic
estimate for the approximation error. Specifically, the order of convergence of
the approximation error, as given in (5.2), may be lower than the actual order
of convergence. In this section, we will show that the appropriate hypothe-
sis for the approximation error estimate is the quasi-reproducing property of
shape functions; this hypothesis gives the correct order of convergence for
the approximation error. We will also show that the interpolation error may
decrease at a higher rate, in the pre-asymptotic range, than is predicted by
(5.1). This pre-asymptotic range can be so large that for practical accuracy,
the asymptotic range is not visible.

The theory of approximation of functions by translation invariant shape
functions was developed in [4], [23], [24] using Fourier Transform. An
approximation result with respect to shape functions, which are not trans-
lation invariant, was proved in [8]. We cite a theorem from [24].

Theorem 5.1 Suppose φ ∈ Hq(Rn) has compact support. Then the follow-
ing three conditions are are equivalent:

1.

φ̂(0) 	= 0

and

Dαφ̂(2πj) = 0, for 0 	= j ∈ Z
n and |α| ≤ k.

2. For |α| ≤ k,
∑

j∈Zn

jαφ(x − j) = λxα + q|α|−1(x),

where λ 	= 0, and degree q|α|−1 < |α|.(5.3)

The equality in (5.3) is for almost all x ∈ R
n. The function of the right-

hand side of (5.3) is, of course, continuous. If the function on the left-hand
side is continuous, which will be the case if q > n/2, then (5.3) will hold
for all x ∈ R

n.
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3. For each u ∈ Hk+1(Rn), there are weights wh
j ∈ R, for j ∈ Z

n and
0 < h, such that

∥∥∥∥∥∥
u −

∑

j∈Zn

wh
j φ

h
j

∥∥∥∥∥∥
Hs(Rn)

≤ Chk+1−s‖u‖Hk+1(Rn), for 0 ≤ s ≤ min{q, k + 1},(5.4)

and

hn
∑

j∈Zn

(wh
j )

2 ≤ K2‖u‖2
H 0(Rn)

.

Here C and K may depend on q, k, and s, but are independent of u and h.
The exponent k +1− s is the best possible if k is the largest integer for which
(5.3) holds.

Remark 5.1 We note that (5.3) is precisely the definition of quasi-repro-
ducing of order k (for the basic shape function φ(x); see (2.3)), which is
equivalent to (2.4).

Remark 5.2 For a function u ∈ Hk+1(�), where � ∈ R
n is a bounded

domain with Lipschitz-continuous boundary, we know from Section 3 that
u can be extended to a function ū ∈ Hk+1(Rn) satisfying (3.3). Thus for
translation invariant shape functions that are reproducing of order k, (5.4) is
true for ū (with u replaced by ū). Then using (3.3) one can show that (5.4)
is also true with Hs(Rn) and Hk+1(Rn) replaced by Hs(�) and Hk+1(�),
respectively.

Now, from the definition of reproducing and quasi-reproducing shape
functions, it is clear that if a basic shape function φ(x) is reproducing of
order k, then it is also quasi-reproducible of order k. But a basic shape shape
function may be reproducing of order k, but quasi-reproducing of higher
order k + k′, k′ ≥ 1. In this case, the approximation error estimate is

inf
φ∈Sh

‖u − φ‖l,� ≤ Chk+k′+1−l , l = 0, 1,(5.5)

as seen from (5.4) and Remark 5.2. But (5.2), which is based on the interpo-
lation error estimate (that uses the reproducing property of shape functions),
only yields O(hk), and thus gives sub-optimal order of convergence of the
approximation error.

We will illustrate this phenomenon with a numerical experiment. We
consider the basic shape function φ(x), whose Fourier Transform is given by

φ̂(ξ) = (sin(ξ/2)/(ξ/2))4.
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φ(x) is the B-spline of order 4 and is piecewise cubic with support [−2, 2]. It
is reproducing of order k = 1, but quasi-reproducing of order 3. We consider
the shape functions corresponding to this basic shape function. We computed
the error ‖u−P 0

h u‖0,� and ‖u− Ĩhu‖0,� for n = 1/h = 10, 12, 14, . . . , 30,
where u(x) = x4 and � = (0, 1). Here P 0

h u is the L2-projection of u onto
the space spanned by these shape functions, defined as

P 0
h u(x) ∈ span{φh

i }i∈Ah,
(5.6) ∫ 1

0
(u − P 0

h u)φh
i dx = 0, i ∈ Ah,

where Ah = {m ∈ Z : η◦m
h ∩ � 	= ∅}. We note that the computation of P 0

h u

does not require the values of u(x) outside the domain �, but the set Ah

contains some particles outside �. As before, Ĩhu is the interpolant of u, as
defined in (3.2), with respect to these shape functions.

We have plotted loglog graphs of Eh
Int = ‖u − Ĩhu‖0,� and Eh

Proj =
‖u − P 0

h u‖0,� with respect to n = 1/h in Figures 5.1(a) and 5.2(b).
We observe from Figure 5.1 that the values of ‖u − P 0

h u‖0,� are much
smaller than the values of ‖u − Ĩhu‖0,�. We also clearly see that ‖u −
Ĩhu‖0,� = O(h2) and ‖u − P 0

h u‖0,� = O(h4). These rates are predicted by
our analysis.

Also, since the particular basic shape function (B-spline of order 4) we
considered for this experiment is quasi-reproducing of order 3 and repro-
ducing of order 1, from (5.5) with l = 0 we expect ‖u − P 0

h u‖0,� =
O(h4), whereas from (5.1) with l = 0 we expect ‖u − Ĩhu‖0,� = O(h2).
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Fig. 5.1 (a), (b). The loglog graph of Eh
Int = ‖u − Ĩhu‖0,� and Eh

Proj = ‖u − P 0
h u‖0,�

with respect to n = 1/h. P 0
h u is the L2-projection of u(x) = x4 onto the space spanned

by shape functions that are reproducing of order 1 and quasi-reproducing of order 3. Ĩhu

is the interpolant of u(x) using the same shape functions
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Computation ofH 1 semi-norm of these errors shows that |u−Ĩhu|1,� = O(h)

and |u − P 0
h u|1,� = O(h3); we have not included these computations here.

This indicates that (5.2), which is based on interpolation and the reproduc-
ing property of shape functions, may give pessimistic order of convergence
for the approximation error. But (5.5), which is based on Theorem 5.1 and
quasi-reproducing property of shape functions, yields higher order of con-
vergence for the approximation error. We note that the order of convergence
in the interpolation error estimate (5.1) is not pessimistic; it depends on the
reproducing property of the shape functions, but is insensitive to the quasi-
reproducing property of the shape functions, as was shown in this
computational example. Thus an approximation error estimate, derived from
the interpolation error estimate, e.g., (5.2), may give pessimistic order of con-
vergence when quasi-reproducing shape functions of higher order are used.

We note, however, that a basic shape function φ(x) may be reproduc-
ible of order k, and not quasi-reproducible of any higher order. In this case,
Theorem 5.1 and (5.2) give the same order of convergence, i.e., approxi-
mation error analysis using interpolation does not give pessimistic results.
But even in this case, the H 1-norm (or H 1-seminorm) of the interpolation
error may decrease at a higher rate than given in (5.1), with l = 1, in the
pre-asymptotic range.

This phenomenon occurs when the basic shape function φ(x) is “almost
quasi-reproducing” of order (k + 1), which we define as follows:

(a) φ(x) is reproducible of order k
(5.7)

(b) λ̄ ≈ 0,

where λ̄ is the largest eigenvalue of the matrix A given in (3.7). The
translation invariant particle shape functions φh

i (x), corresponding to such
basic shape function φ(x), will also be referred to as almost quasi-reproduc-
ing of order (k + 1).

We note that if the basic shape function φ(x) is reproducing of order k

and satisfies

ξα(x) ≡ xα −
∑

i∈Zn

iαφ(x − i) ≈ Cα, for all |α| = k + 1,

where Cα is constant, then the elements of the matrix A are small (see Remark
3.2), and therefore λ̄ is also small, implying that the basic shape function φ(x)

is almost quasi-reproducible of order (k + 1). In 1-d, λ̄ = |ξk+1|21/(k + 1)!2

and therefore a basic shape function φ(x) is almost quasi-reproducing of
order (k + 1) if ξk+1(x) ≈ C, where C is a constant.

Now, for a smooth function u defined on �, we have from Remark 3.11
that

‖u − Ĩhu‖1,� ≤
√

λ̄ hk|u|k+1,� + o(1)hk,(5.8)
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where the shape functions are reproducing of order k. This is also true when
‖u − Ĩhu‖1,� in the left-hand side of (5.8) is replaced by |u − Ĩhu|1,�. For
shape functions that are almost quasi-reproducing of order (k +1), λ̄ is small
and it is clear from (5.8) that ‖u − Ĩhu‖1,� will exhibit a higher order of
convergence than the expected order, which is O(hk), in the pre-asymptotic
range. Depending on the size of λ̄, this pre-asymptotic range can be so large
that for practical computation, the asymptotic range may not be visible. The
same phenomenon is also true for |u − Ĩhu|1,�.

We will illustrate this phenomenon with a numerical experiment. We
consider the one-dimensional translation invariant RKP shape functions,
reproducing of order k = 1, corresponding to the conical weight function
given in (2.15) with l = 10 and R = 3.40177. In this case, the computed
value of |ξ2|1 ≈ 2.04 ∗10−6. Clearly, |ξ2|1 is small and these shape functions
are almost quasi-reproducible of order 2. In Figures 5.2(a) and (b), we plotted
loglog graphs of Eh

0 = ‖u − Ĩhu‖0,� and Eh
1 = |u − Ĩhu|1,� with respect to

n = 1/h for n = 20, 30, . . . , 100. Here u(x) = x4, � = (0, 1), and Ĩhu(x)

is the interpolant of u(x) with respect to these shape functions.
We observe from Figure 5.2(b) that |u−Ĩhu|1,� ≈ O(h2), which is higher

than O(h), the order predicted by (5.1), with l = 1, and with the norm of the
error replaced by the semi-norm. This shows that |u − Ĩhu|1,� may decrease
at a higher order than predicted by (5.1), with l = 1, in the pre-asymptotic
range, when almost quasi-reproducible shape functions of order (k + 1) are
used in the interpolation. In fact, from (5.8), we see that we have to take
h <<

√
λ̄ = |ξ2|1/2 = 1.02 ∗10−6 to get the expected |u− Ĩhu|1,� ≈ O(h)

in our experiment (i.e., in Figure 5.2(b)). However, we note from Figure 5.2(a)
that ‖u − Ĩhu‖0,� ≈ O(h2), which is same as predicted by (5.1) with l = 0.
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Fig. 5.2 (a), (b). The loglog graph of Eh
0 = ‖u − Ĩhu‖0,� and Eh

1 = |u − Ĩhu|1,� with
respect to n = 1/h, where u(x) = x4 and Ĩhu is the interpolant of u(x) using shape
functions that are reproducing of order 1 and almost quasi-reproducing of order 2
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Nevertheless, we reiterate that we get the expected order of conver-
gence for |u − Ĩhu|1,�, as obtained from (5.2), when the shape functions are
reproducing of order k and are neither quasi-reproducing nor almost quasi-
reproducing of order (k + 1). A loglog plot of the values of |u − Ĩhu|1,� in
Table 4.1 with respect to n = 1/h shows that the order of convergence is
O(h) when h is small; we have not included this plot.

6 Comparison of translation invariant and standard
RKP-shape functions

In the last section, we discussed the interpolation error and the approxima-
tion error for particle shape functions. We also observed that the values in
Table 4.3 are consistently larger than the values in Table 4.1. Recall that
Tables 4.1 and 4.3 provide the values of |u − Ĩhu|1,�, where Ĩhu is the in-
terpolant of u = x4 on � = (0, 1) corresponding to translation invariant and
standard RKP shape functions, respectively. It is interesting to compare the
errors (not the norm of the errors) generated by using these two classes of
shape functions. In this section, we numerically study the errors u− Ĩhu and
u′ − (Ĩhu)′, where u is a given smooth function and the interpolant Ĩhu is
obtained using translation invariant as well as standard RKP shape functions.
We will also compare the errors u′ − (P 1

h u)′ and u′ − (P 2
h u)′, where P 1

h u,
P 2

h u are H 1-projections of u onto the spaces spanned by these two classes of
shape functions.

Throughout this section, we will consider u(x) = (x − .5)2, x ∈ � =
(0, 1), and will use the RKP shape functions, translation invariant as well
as standard, that are reproducing of order k = 1, corresponding to the
conical weight function given in (2.15) with l = 2 and R = 2.5. In this
case, |ξ2|1 = 0.1137, and the corresponding translation invariant RKP shape
functions are not almost quasi-optimal of order 2. We have considered a
different function u in this section to illustrate (3.5) in Lemma 3.1. Also this
u is symmetric about x = 0.5, so we should expect symmetry in the error.

We first present graphs of (u − Ĩhu)(x), 0 ≤ x ≤ 1 for two different
values of h = 1/n in Figures 6.1(a)–(d).

We first remark that (u − Ĩhu)(x) = ξh
2 (x) (cf.(3.4)), since the

translation invariant shape functions that we considered are reproducing
order 1 and u is quadratic. In Figures 6.1(a) and (c), we have plotted the
graphs of (u − Ĩhu)(x) for n = 1/h = 20, 40, respectively, where the inter-
polant Ĩhu corresponds to the translation invariant RKP shape functions. It is
clear from these two figures that (u−Ĩhu)(x) = ξh

2 (x) is periodic throughout
the interval � = (0, 1). This illustrates (3.5) in Lemma 3.1. Also the values
of (u − Ĩhu)(x) are symmetric about x = 0.5 and their magnitude decrease
as n increases from 20 to 40.
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Fig. 6.1 (a)–(d). Figures 6.1(a) and (c) are graphs of (u − Ĩhu)(x), 0 ≤ x ≤ 1, for
n = 1/h = 20, 40, respectively. Here u(x) = (x − .5)2 and Ĩhu is the interpolant of u

using translation invariant RKP shape functions that are reproducing of order 1. Figures
6.1(b) and (d) are graphs of (u− Ĩhu)(x), 0 ≤ x ≤ 1, for n = 1/h = 20, 40, respectively,
where Ĩhu is the interpolant of u using standard RKP shape functions that are reproducing
of order 1

In Figures 6.1(b) and (d), we have plotted the graphs of (u − Ĩhu)(x) for
n = 1/h = 20, 40, respectively, when the interpolant Ĩhu corresponds to the
standard RKP shape functions. Also in this case, the values of (u − Ĩhu)(x)

are symmetric about x = 0.5, and their magnitude decrease as n increases
from 20 to 40. Moreover, the behavior and magnitude of (u − Ĩhu)(x) in
Figures 6.1(b) and (d) in the middle part of the domain � = (0, 1), e.g.
in (.4,.6), is similar to that in Figures 6.1(a) and (c), respectively. This is
the result of the translation invariance of standard RKP particle shape func-
tions, corresponding to the uniformly distributed particles in the interior of
the domain � = (0, 1), sufficiently away from the boundary. But, in contrast
to Figures 6.1(a) and (c), Figures 6.1(b) and (d) show a boundary layer in
(u − Ĩhu)(x). We computed the ratio:

L = A − m

B − m
=
(

A − B + C

2

)/(B − C

2

)
,(6.1)
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where

A = (u − Ĩhu)(1), B = max
.4≤x≤.6

(u − Ĩhu)(x),

C = min
.4≤x≤.6

(u − Ĩhu)(x), m = B + C

2
.

In other words, the quantity L measures the factor by which the maximum
deviation of error at the boundary from m — which is the mean of the error
near the middle of the domain — “shoots off” with respect to the maximum
deviation of the error in the middle of the domain from m. We note that L is
almost independent h for small h, since the numerator and denominator of L

are of the same order in h. We obtained L ≈ 40, and as expected, this value
was about same for n = 20 and 40.

In Figures 6.2(a)–(d), we present the graphs of u′ − (Ĩhu)′ for the same
values of n.
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Fig. 6.2 (a)–(d). Figures 6.2(a) and (c) are graphs of (u′ − (Ĩhu)′)(x), 0 ≤ x ≤ 1, for
n = 1/h = 20, 40, respectively. Here u(x) = (x − .5)2 and Ĩhu is the interpolant of
u using translation invariant RKP shape functions that are reproducing of order 1. Fig-
ures 6.2(b) and (d) are graphs of (u′ − (Ĩhu)′)(x), 0 ≤ x ≤ 1, for n = 1/h = 20, 40,
respectively, where Ĩhu is the interpolant of u using standard RKP shape functions that
are reproducing of order 1
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As before, we have plotted the graphs of (u′ − (Ĩhu)′)(x) for n = 1/h =
20, 40 in Figures 6.1(a) and (c), respectively, where the interpolant Ĩhu

corresponds to the translation invariant RKP shape functions. Clearly, (u′ −
(Ĩhu)′)(x) is periodic throughout the interval (0, 1), as expected, being the
derivative of a periodic function. Also the values of (u′ − (Ĩhu)′)(x) are
anti-symmetric about x = 0.5, and their magnitude decrease as n = 1/h

increases.
Also as before, we have plotted the graphs of (u′ − (Ĩhu)′)(x) for n =

1/h = 20, 40 in Figures 6.2(b) and (d), respectively, where the interpo-
lant Ĩhu corresponds to the standard RKP shape functions. The values of
(u′ − (Ĩhu)′)(x) decreases as n increases from 20 to 40 as expected. Also the
magnitude of the (u′ −(Ĩhu)′)(x), for fixed n, increases near the endpoints of
the interval (0,1), which corresponds to the boundary layers in Figures 6.1(b)
and (d). We computed the ratio L as in (6.1) (with A = (u′ − (Ĩhu)′)(1), and
with similar changes in B and C), and we obtained L ≈ 6.6, which did not
change with n.

We saw that interpolation error gives rise to boundary layer when
standard RKP shape functions are used. Now we will investigate whether
similar phenomenon occurs in the approximation error. In Figures 6.3(a)–
(d), we have plotted u′ − (P 1

h u)′ and u′ − (P 2
h u)′ for two different values of

h = 1/n, where u = (x − 0.5)2, x ∈ (0, 1). Here, P 1
h u is the H 1-projec-

tion of u onto space spanned by translation invariant RKP shape functions,
defined as

P 1
h u ∈ span{φh

i }i∈Ah,
(6.2) ∫

�

[u′ − (P 1
h u)′](φh

i )′ dx = 0, i ∈ Ah,

where Ah = {m ∈ Z : η◦m
h ∩ � 	= ∅}, as previously defined. P 2

h u is the
H 1-projection of u onto space spanned by standard RKP shape functions,
defined as

P 2
h u ∈ span{φh

i }i∈A�
,

(6.3) ∫

�

[u′ − (P 2
h u)′](φh

i )′ dx = 0, i ∈ A�,

where A� = {j ∈ Z : xh
j ∈ �̄}.

In Figures 6.3(a) and (c), we plotted (u′ − (P 1
h u)′)(x) for n = 40, 60

respectively. We clearly see that the values of (u′ − (P 1
h u)′)(x) are anti-

symmetric about x = 0.5, and their magnitude decrease as n increases. We
also see that (u′ − (P 1

h u)′)(x) is periodic in the interior of the interval (0, 1),
in contrast to Figures 6.2(a) and (c) where the error is periodic throughout the
interval. But the graphs in Figures 6.3(a) and (c) do not show any substantial
change in the behavior of the error near the boundary.
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Fig. 6.3 (a)–(d). Figures 6.3(a) and (c) are graphs of (u′ − (P 1
h u)′)(x), 0 ≤ x ≤ 1, for

n = 1/h = 20, 40, respectively. Here u(x) = (x − .5)2 and P 1
h u is the H 1-projection

of u onto the space spanned by translation invariant RKP shape functions that are repro-
ducing of order 1. Figures 6.3(b) and (d) are graphs of (u′ − (P 2

h u)′)(x), 0 ≤ x ≤ 1,
for n = 1/h = 20, 40, respectively, where P 2

h u is the H 1-projection of u onto the space
spanned by standard RKP shape functions that are reproducing of order 1

Figures 6.3(b) and (d) are plots of (u′ − (P 2
h u)′)(x) for n = 40, 60

respectively. The values of (u′ − (P 2
h u)′)(x) are also anti-symmetric about

x = 0.5, and their magnitude decrease as n increases. Though we do not see
any strong boundary layer in Figures 6.3(b) and (d), as observed in Figures
6.2(b) and (d), we certainly see that (u′ − (P 2

h u)′)(x) shoots off for certain
values of x close to the boundary, and the magnitude of these “shoot-offs”
are higher nearer the boundary. We further observe from Figure 6.3(b) that
(u′ − (P 2

h u)′)(x) does not show any periodicity in the interior of (0, 1) for
n = 40, as in Figure 6.3(a). But for n = 60, the behavior and magnitude
of (u′ − (P 2

h u)′)(x) in the interior of the interval (0, 1), e.g., in (4.5, 5.5)

in Figure 6.3(d) is similar to (u′ − (P 1
h u)′)(x), in Figure 6.3(c). In particu-

lar, (u′ − (P 2
h u)′)(x) is periodic in (4.5, 5.5). A comparison of all the four

plots in Figure 6.3 suggests that, as n increases, the behavior and magnitude
of (u′ − (P 2

h u)′)(x) in the interior of the interval (0, 1) is similar to that of
(u′ − (P 1

h u)′)(x). This was also supported by our computations with higher
values of n, which we did not include here. Computing with higher values of
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n also suggested that the size of the interior region, where (u′ − (P 2
h u)′)(x)

is periodic, increases as n is increased.
Thus, Figures 6.1–6.3 suggest that interpolation or approximation of

smooth functions by standard RKP shape function may have “erratic” behav-
ior near the boundary of the domain, and in particular may not be accurate
near the boundary. We believe that this behavior is due to the fact that standard
RKP shape functions use particles only inside the domain. On the other hand,
interpolation or approximation of smooth functions by translation invariant
shape functions, which use particles also outside the domain, does not show
this behavior.

7 Conclusion

We have addressed the issue of the selection of translation invariant particle
shape functions that yields efficient approximation. Our main conclusions
and observations are:

• From a given collection of basic shape functions that are reproducing of
order k, we choose the basic shape function with least value of λ̄, where λ̄ is
the largest eigenvalue of the matrix A given in (3.7). The translation invari-
ant particle shape functions corresponding to this shape function will yield
efficient approximation among the particle shape functions corresponding
to other basic shape function in the collection. This selection process is
based on Theorem 3.1. The same process also appear to be successful for
standard RKP shape functions.

• The notion of quasi-reproducing shape function of order k in the approxi-
mation analysis, as opposed to the notion of reproducing shape functions
of order k, gives correct order of convergence for the approximation error.

• The interpolation error may decrease at a rate higher, in the pre-asymptotic
region, than is predicted by the theory. This pre-asymptotic rate could be
so large that it is not visible for practical accuracy.

• Standard RKP shape functions gives rise to boundary layers in the inter
polation error. The projection error, corresponding to these shape func-
tions, also shows a similar irregular boundary behavior. The translation
invariant RKP shape functions do not show this behavior.
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