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Abstract

Effective shape functions for the Generalized Finite Element Method should reflect the available information on the

solution. This information is partially fuzzy, because the solution is, of course, unknown, and typically the only

available information is the solution�s inclusion in a variety of function spaces. It is desirable to choose shape func-

tions that perform robustly over a family of relevant situations. Quantitative notions of robustness are introduced and

discussed. We show, in particular, that in one dimension polynomials are robust when the available information

consists in inclusions in Sobolev-type spaces that are x-independent.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The h, p, and hp versions of the finite element method employ local polynomial approximating or shape
functions. These approximating functions, and the finite element methods based on them, are effective in

many situations. In certain other situations, non-polynomial approximating functions have been used, and

have been shown to be effective. We mention pullback polynomials (see e.g., [7]), the ‘‘quarterpoint’’ ele-

ments [10,15], and the enrichment of the finite element spaces by special functions. Recently, the generalized

finite element method (GFEM), and its various meshfree methods versions, have been developed and

analyzed. These methods also make flexible use of non-polynomial shape functions. They are often very

effective (see e.g., [1,3,6,11,13,14,19–21,23,26,27]).
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Polynomials have been studied for many years, starting in the 19th century, and they have been shown to
have mostly good approximation properties. Nevertheless, they are not ‘‘good for all seasons’’. In [8], it was

shown that for differential equations with rough coefficients, the finite element method using polynomial

shape functions can lead to arbitrarily ‘‘bad’’ results.

Hence the following questions arise: What kinds of approximating functions should be used in various

situations? In which situations are polynomials preferable? It is clear that the answer to these questions

depends on the available information on the function to be approximated. This information can be of

a priori or a posteriori type. In both cases the information has a fuzzy character, because the functions to be

approximated is typically the unknown solution of a boundary value problem. In this paper we will address
these questions in the one dimensional setting. The higher dimensional case will be addressed in a forth-

coming paper.

To illustrate the issues we have raised, consider the problem

�w00ðxÞ ¼ f ðxÞ; x 2 I ¼ ð�1; 1Þ;
wð�1Þ ¼ wð1Þ ¼ 0

�
ð1:1Þ

which has the variational formulation: Find w 2 H 1
0 ðIÞ satisfying

Bðw; vÞ ¼ F ðvÞ; for all v 2 H 1
0 ðIÞ; ð1:2Þ

where

Bðw; vÞ ¼
Z 1

�1

w0ðxÞv0ðxÞdx; ð1:3Þ

F ðvÞ ¼
Z 1

�1

f ðxÞvðxÞdx; ð1:4Þ

and

H 1
0 ðIÞ ¼ u : juj1

�
¼
Z 1

�1

ju0ðxÞj2 dx < 1; uð 
 1Þ ¼ 0

�
: ð1:5Þ

We then approximate the solution of (1.2) by the Galerkin method. Toward this end we assume we have a

set of basis functions, g1; g2; . . ., in H 1
0 ðIÞ, and define the approximate solution by:

Find wn ¼
Pn

k¼1 akgk satisfying

Bðwn; gjÞ ¼ F ðgjÞ; for j ¼ 1; . . . ; n: ð1:6Þ

wn is called the Galerkin approximation to w determined by the basis functions fgkg. We now consider, as

examples, two specific sets of basis functions fgkg:

(A) The sine functions,

gT
k ¼ sin

p
2

kðx þ 1Þ; k ¼ 1; 2; . . . ð1:7Þ

(B) The polynomial functions,

gP
k ¼ ð1� x2Þxk�1; k ¼ 1; 2; . . . ð1:8Þ

Each of these families is linearly independent and complete in H 1
0 ðIÞ. We note that the span fgP

j ; j ¼
1; 2; . . . ; ng ¼ spanf

R x
�1

LjðxÞdx; j ¼ 1; 2; . . . ; ng, where LjðxÞ is the Legendre polynomial of degree j. We
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then denote by wT
n and wP

n the approximate solutions using n trigonometric and n polynomial basis func-

tions, respectively.

Is it better to use the trigonometric function or the polynomials? To begin to answer this question, let

eT
n ¼ w � wT

n ; eP
n ¼ w � wP

n ; ð1:9Þ

ET
n ¼ jeT

n j1
jwj1

; EP
n ¼ jeP

n j1
jwj1

; ð1:10Þ

be the errors and relative errors in the approximate solutions.

Let us examine ET
n and EP

n for the following two-parameter family of functions (exact solution of (1.2)):

w ¼ wb;c ¼ ð1þ xÞbðx � 0:5Þc; �16 x6 0:5;

ð1� xÞbðx � 0:5Þc; 0:56 x6 1;

�
ð1:11Þ

where bP 1 and cP 1 are integers. Note that the function wb;c given in (1.11) is analytic (in fact, is a

polynomial) in each of the intervals �16 x6 0:5 and 0:56 x6 1. Also, dc�1w=dxc�1 is continuous on ½�1; 1�
and dcw=dxc has a jump discontinuity at the point 0.5.

Fig. 1 shows ET
n and EP

n for c ¼ 5 and for b ¼ 1 and 7. For numerical values, see [2]. Fig. 1 shows the

following features:

(a) The asymptotic rate of convergence of EP
n is Oðn�ðc�1=2ÞÞ, which is independent of b.

(b) The pre-asymptotic performance of polynomial approximation shows dependence on b. Although the

asymptotic rate for polynomial approximation is the same for b ¼ 1 and b ¼ 7, the pre-asymptotic be-

havior clearly influences the magnitude of the errors for large n.

(c) For ET
n , the rate of convergence depends on both b and c, with

ET
n ¼ Oðn�minðc�1=2;bþ1=2ÞÞ; for b odd: ð1:12Þ

(d) Trigonometric polynomials perform marginally better than algebraic polynomials for ðb; cÞ ¼ ð7; 5Þ,
but perform much worse for ðb; cÞ ¼ ð1; 5Þ.

Fig. 1. The relative errors as a function of n when wb;c is approximated by trigonometric and algebraic polynomials. EP
n is represented

by the solid line and ET
n by the dotted line. Note the same convergence rate, namely Oðn�4:5Þ, for algebraic polynomial approximations

(independent of b) in (a), and the different rates of convergence for algebraic and trigonometric polynomial approximations in (b). Also

note in (a) that the error for trigonometric polynomial approximation is marginally smaller than that for algebraic polynomials in the

case b ¼ 7, irrespective of the same Oðn�4:5Þ convergence.
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The functions we wish to approximate may have a number of features. These include: smoothness,
boundary behavior, boundary layers, oscillations, etc. Functions in higher dimension may have addi-

tional features. These features influence the approximation of these function in both the pre-asymptotic

and asymptotic range. The family wb;c has only two of these features; namely smoothness, parameterized

by c, and boundary behavior, parameterized by b. Nevertheless, we have chosen this two parameter

family of functions because it illustrates, in a simple setting, the variety of features functions may have,

and, in addition, the interplay of these features. In practice, many families of shape functions are used

for approximation, especially in higher dimensions, in connection with the GFEM and with Meshfree

Methods. Nevertheless, we consider only two families of shape functions––algebraic and trigonometric
polynomials––because these families share many features with the larger class of shape functions that are

used.

The available information on the approximated function, typically the unknown solution of a boundary

value problem, is fuzzy. It is usually characterized by the function�s inclusion in a family of function

spaces. Effective shape functions should have good approximation properties in all the spaces of this

family. In this paper, we develop quantitative concepts for assessing and comparing effectiveness of various

families of shape functions. We focused on the principles that should govern the selection of shape

functions, and elaborated in detail the one dimensional case. These results are arrived through a collection
of theoretical results. These include a thorough study of the properties of the quantitative notions men-

tioned above. We have also presented detailed numerical computations, which illustrate these theoretical

results.

Section 2 briefly describes the GFEM, introduced to further motivate our study. In Section 3 we describe

a wide family of function spaces, and discuss their role in understanding approximation. We also discuss

the notion of ‘‘smoothness’’, and explain some of the observations made about the example in the present

section. Section 4 introduces the basic concepts in term of which we assess the effectiveness of specific

families of approximating functions. In Section 5 we present the main results of the paper. In Section 6, we
present computational results and their interpretation. These computations illustrate the results presented

in Section 5. Finally, in Section 7 we summarize the conclusions of this paper.

2. The Generalized Finite Element Method

In this section we briefly describe the GFEM. Let X � Rd be a bounded domain with boundary C, and
denote by H 1ðXÞ the usual Sobolev space of functions with square integrable first derivatives. Let Vi ,
i ¼ 1; . . . ;N , be a collection of Lipschitz functions with supports ri, respectively, (we do not assume

ri � X), and suppose that

(a)
PN

i¼1 ViðxÞ ¼ 1 on X,

(b) jViðxÞj6C1, i ¼ 1; . . . ;N ,

(c) jgradViðxÞj6CG=diamðriÞ, i ¼ 1; . . . ;N ,

(d) there is an M such that any x 2 X lies in at most M of the supports ri.

The supports ri are called patches. We then assume we are given functions gi;j, j ¼ 1; . . . ;mðiÞ,
i ¼ 1; . . . ;N , with gi;j 2 H 1ðriÞ and gi;1 ¼ 1. If ri;D ¼ ri \ CD, where CD � C is the portion of the boundary

where (zero) Dirichlet boundary conditions are prescribed, and the measure of ri;D 6¼ 0, then we assume the

gi;j ¼ 0 on ri;D (and hence the condition gi;1 ¼ 1 is not imposed).

For fixed i, let Si be the span of gi;j, j ¼ 1; 2; . . . Clearly

Vigi;jjX 2 H 1ðXÞ; i ¼ 1; . . . ;N ; j ¼ 1; . . . ;mðiÞ; ð2:1Þ
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where Vigi;jjX denotes the restriction of Vigi;j to X. We denote by S the span of all the Vigi;j, j ¼ 1; . . . ;mðiÞ,
i ¼ 1; . . . ;N . For w 2 H 1ðXÞ, it can be shown [3,6,23] that

inf
v2S

jw � vj2H1ðXÞ 6C
XN

i¼1

inf
q2Si

jw � qj2H1ðri\XÞ; ð2:2Þ

where the constant C in (2.2) depends only on C1, CG, and M.

The GFEM is the Galerkin method using S as approximating functions. Estimate (2.2), together with the

usual quasi-optimal estimate for Galerkin methods, shows that the error in the GFEM is directly related to
the approximation properties of the systems fgi;jg

mðiÞ
j¼1 on the patches ri. A special form of GFEM was

introduced in [3] to address problems with rough coefficients. This method was extended in [6,23], and

called the partition of unity finite element method (PUFEM). For further development of GFEM (see

[26,27]). The GFEM is closely related to meshfree methods [1,11–14,19–22].

Let us now specialize the GFEM to one dimensional problems on I ¼ ð�1; 1Þ. Consider, for example,

the specific problem

�w00ðxÞ ¼ f ðxÞ; for x 2 I ¼ ð�1; 1Þ;
w0ð�1Þ ¼ w0ð1Þ ¼ 0;R 1

�1
wdx ¼ 0;

8<: ð2:3Þ

where f is a given function satisfying
R 1

�1
f ðxÞdx ¼ 0. Then, if we wish to use the GFEM to approximate the

solution w, we need to construct a system gi;j, i ¼ 1; . . . ;N , j ¼ 1; . . . ;mðiÞ that closely approximates the

solution w on the patch ri in the H 1-seminorm. This is equivalent to the construction of a system /i;j ¼ g0
i;j

that closely approximates w0ðxÞ on ri in the L2-norm. The situation is similar for other problems. For
example, for the problem

�w00ðxÞ ¼ f ðxÞ; for x 2 I ¼ ð�1; 1Þ;
wð�1Þ ¼ wð1Þ ¼ 0 or w0 ¼ wð1Þ ¼ 0;

�
ð2:4Þ

we are again interested in L2-approximation of w0 because we can easily construct the approximation in H 1

that satisfies the essential (Dirichlet) boundary conditions.

Hence we are led to the problem of selecting a system of basis functions, /i;j ¼ g0
i;j, on ri that closely

approximate the derivative u ¼ w0 of the unknown solution w in L2. We note that generally it is not possible

to view approximations in this way. In fact, for second order boundary value problem in higher dimension,

approximations are naturally viewed in H 1. Nevertheless, in this paper we restrict our attention to ap-

proximation in L2. Without loss of generality we can assume ri ¼ r ¼ ð�1; 1Þ. We are thus seeking ap-
proximating functions /i that closely approximate u on r ¼ ð�1; 1Þ in L2. These functions are called basis

or shape functions.

3. Function spaces and their role in approximation

In this section we define the Sobolev-type spaces we will use in our analysis. As pointed out in the Section

1, the assessment of the approximation properties of a specific family of basis functions depends on the
available information on the function we are approximating. We typically know that the function u of

interest is included in some function space. But it is also typical that the function is included in many spaces,

and this information provides a more complete understanding of the function. It is thus important to have

for our use a broad family of appropriate function spaces.
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For k ¼ 0; 1; . . . and I ¼ ð�1; 1Þ, HkðIÞ denotes the kth order Sobolev space, with the norm

kuk2k ¼
Xk

j¼0

juj2j ; ð3:1Þ

where

juj2j ¼
Z 1

�1

juðjÞðxÞj2dx: ð3:2Þ

Let a ¼ ða0; a1; . . .Þ be a sequence of non-negative numbers, with a0 ¼ 1, and let k be a non-negative integer

or þ1. We then define the Sobolev-type space H a;kðIÞ by

H a;kðIÞ ¼ u 2 L2ðIÞ : kuk2Ha;k

(
�
Xk

j¼0

ajjuj2j < 1
)
: ð3:3Þ

With the associated inner product, H a;kðIÞ is a Hilbert space. We will often write H a;k for H a;kðIÞ. We note

that when k ¼ 1,

kuk2Ha;1 ¼
X1
j¼0

ajjuj2j ¼ lim
k!1

kuk2Ha;k : ð3:4Þ

Remark 3.1. The sequence a introduced here does not depend on k. It will be useful, however, to also

consider k-dependent a, by which we mean a family of finite sequences: aðkÞ ¼ ða0ðkÞ; a1ðkÞ; . . . ; akðkÞÞ,
06 k < 1. The norm on the associated Sobolev space is the natural extension of the norm defined in (3.3):

kuk2HaðkÞ;k ¼
Pk

j¼0 ajðkÞjuj2j . We will speak of k-independent a and k-dependent aðkÞ. For any k-independent
a ¼ ða0; a1; . . .Þ, we can define an associated k-dependent a ¼ aðkÞ by letting aiðkÞ ¼ ai for 06 i6 k and
aiðkÞ ¼ 0 for i > k. With this convention, H a;k ¼ H aðkÞ;k, and k-independent a can be also be considered as k-
dependent.

Remark 3.2. For a k-independent a, it is easily seen that

H a;kþ1 � H a;k and kukHa;k 6 kukHa;kþ1 ; for all u 2 H a;kþ1:

This result does not hold in general for k-dependent aðkÞ, but there are a ¼ aðkÞ for which the result does

hold, i.e., aðkÞ for which

H aðkþ1Þ;kþ1 � H aðkÞ;k ð3:5Þ
and

kukHaðkÞ;k 6 kukHaðkþ1Þ;kþ1 ; for all u 2 H aðkþ1Þ;kþ1; ð3:6Þ
or at least (3.5), hold.

We consider the following choices for a:

aj ¼ 1; ð3:7aÞ

aj ¼
k
j

� 
; for j6 k; where k < 1; ð3:7bÞ
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aj ¼
1 if j ¼ 0;
0 if 16 j6 k � 1; where k < 1;
1 if j ¼ k;

8<: ð3:7cÞ

aj ¼ j!; ð3:7dÞ

aj ¼ 1=j!; ð3:7eÞ

aj ¼ 102j; ð3:7fÞ

aj ¼ 10�2j: ð3:7gÞ

Remark 3.3. Choices (3.7a), (3.7d)–(3.7g) are k-independent, whereas choices (3.7b) and (3.7c) are k-
dependent. (3.5) holds for both of these k-dependent choices. (3.6) holds for choice (3.7b), but not for

choice (3.7c).

The inclusion u 2 H a;k provides information on u and its derivatives that depends on a. We now examine

this information for the choices for a given above. With a as in (3.7a) and with k < 1, we have the usual

Sobolev space Hk : H a;k ¼ Hk and kukHa;k ¼ kukk; if k ¼ 0, we have L2 and the usual L2-norm. The norm

kukk gives equal weight to all of the seminorms jujj, j ¼ 0; 1; . . . ; k. Suppose we know that kukk 6 1. Then we

know that jujj 6 1, j ¼ 0; 1; . . . ; k; but we have very little additional information on the jujj.
The choice of a in (3.7b) arises if we define the Sobolev norm on (�1;1) via the Fourier transform.

This choice gives higher weight to derivatives of orders approximately midway between 0 and k. From the

information that kukHa;k 6 1, we would know that

jujj 6
k
j

� �1=2

; ð3:8Þ

which is more restrictive for j approximately midway between 0 and k, and less restrictive for j near 0 or k.

The choice of a in (3.7c) gives equal weight to u and uðkÞ, but 0 weight to uðjÞ, for j ¼ 1; . . . ; k � 1. From

the information kukHa;k 6 1, we know that juj0 6 1 and jujk 6 1; but the jujj, 16 j6 k � 1, are nearly un-

constrained. There is, however, some information on jujj because there is a constant Ck such that

jujj 6Ckðjuj20 þ juj2kÞ
1=2

; 16 j6 k; ð3:9Þ

but Ck is very large.

For choices of a in (3.7d) and (3.7f), kukHa;k weights the higher derivatives much more than the lower

derivatives. From the information kukHa;k 6 1, we know that

jujj 6 ðj!Þ1=2; for choice ð3:7dÞ; jujj 6 10�j; for choice ð3:7fÞ:

For choices of a in (3.7e) and (3.7g), kukHa;k weights the lower derivatives much more than the higher

derivatives. From the information kukHa;k 6 1, we have

jujj 6 ðj!Þ1=2; for choice ð3:7eÞ; jujj 6 10j; for choice ð3:7gÞ:

Remark 3.4. The reason for the choices (3.7a)–(3.7g) for a will become clear in Section 6. We note that

j! > 102j for large j, i.e., aj in (3.7d) is greater than aj in (3.7f) for large j. This fact will be relevant in

explaining certain computational results in Section 6.
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For all the k-independent choices (3.7a), (3.7d)–(3.7g), functions u 2 H a;1 are entire functions, i.e., they
have analytic extensions to the entire complex plane.

In addition to H a;k we will use the following spaces:

H a;k
even � fu 2 H a;k : uðjÞð�1Þ ¼ uðjÞð1Þ ¼ 0; 06 j6 k � 1; j eveng ð3:10Þ

and

H a;k
odd � fu 2 H a;k : uðjÞð�1Þ ¼ uðjÞð1Þ ¼ 0; 06 j6 k � 1; j oddg; ð3:11Þ

where we assume k < 1 and ak 6¼ 0. On these spaces we use the H a;k-norm:

kukHa;k
even

¼ kukHa;k and kukHa;k
odd

¼ kukHa;k :

With a as in choice (3.7a) above (aj ¼ 1), we often write k for the superscript a, k on these spaces. The

spaces H a;k
even and H a;k

odd impose constraints at the end points of the interval I.

We introduce still additional spaces. Let

V kðIÞ ¼ u 2 L2ðIÞ : kuk2V k

(
¼
Xk

j¼0

juj2V j
j
< 1

)
; ð3:12Þ

where

juj2V j
j
¼
Z 1

�1

ð1� x2ÞjjuðjÞj2 dx: ð3:13Þ

The seminorms jujV j
j
are called Jacobi seminorms. If, as above, a ¼ ða0; a1; . . .Þ is a sequence of non-negative

numbers, with a0 ¼ 1, and 06 k 61, we define

V a;kðIÞ ¼ u 2 L2ðIÞ : kuk2V a;k

(
¼
Xk

j¼0

ajjuj2V j
j
< 1

)
: ð3:14Þ

With the associated inner product, V a;kðIÞ is a Hilbert space. We will often write V a;k for V a;kðIÞ. With a as in

choice (3.7a) above ðaj ¼ 1Þ and with k < 1, we have kukV a;k ¼ kukV k and V a;kðIÞ ¼ V kðIÞ.
We see that H a;k � V a;k. The major difference between the spaces H a;k and V a;k is that derivatives of a

function u are suppressed in kukV a;k by the multiplicative weight function ð1� x2Þj
, and thus functions

u 2 V a;k are permitted to have singular behavior at the endpoints 
1 of the interval I. We note that the

smoothness of the functions in H a;k is characterized uniformly in x, i.e., the weight function in jujj is 1 (cf.

(3.2)). On the other hand, the smoothness of the functions in V a;k is not characterized uniformly in x be-

cause of the presence of the weight function ð1� x2Þj
in jujV j

j
. In this paper, we will not consider spaces with

norms incorporating other x-dependent weight factors.

In Section 1 we considered the Galerkin approximation wT
n of the exact solution, w, of (1.1), by linear

combinations of the functions gT
j ðxÞ ¼ sinðp=2Þjðx þ 1Þ introduced in (1.7), and measured the error in H 1

0

(cf. (1.9) and (1.10)). It can be easily seen that ½wT
n �

0
is the best L2-approximation of w0 in span

fcosðp=2Þðx þ 1Þ; . . . ; cosðp=2Þnðx þ 1Þg. Similarly, one can see that ½wP
n �

0
is the best L2-approximation to w0

in span fx; . . . ; xng.
The quality of approximation by a specific basis depends on the properties of the approximated function,

and these properties are partially known through the information we have on the function. Typically, this
information consists of function space inclusions, which may include boundary conditions. Let us examine

this information for the functions w7;5ðxÞ and w1;5ðxÞ introduced in Section 1, and show how it can be used,

in conjunction with results from Section 5.
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We easily see that w0
1;5 2 H 4ð�1; 1Þ and w0

7;5 2 H 4ð�1; 1Þ, and hence both w0
1;5 and w0

7;5 belong to
V 4ð�1; 1Þ. w0

1;5 and w0
7;5 are also in H a;4 and V a;4 for other values of a, but, for the sake of simplicity, we

consider here only a as in (3.7a). We also see that w0
1;5 2 H 1

odd and w0
7:5 2 H 4

odd.

Consider first the approximation of w0
1;5 and w0

7;5 by cosines. Using (5.48) in Section 5 with k ¼ 1 and 4,

together with the information that w0
1;5 2 H 1

odd and w0
7;5 2 H 4

odd, we have

kw0 � ½wT
n �

0kL2

kw0kL2

6

Cn�1kw0kH1
odd
=kw0kL2

; if w ¼ w1;5ðxÞ;
Cn�4kw0kH4

odd
=kw0kL2

; if w ¼ w7;5ðxÞ:

(
ð3:15Þ

Next consider the approximation of w0
1;5 and w0

7;5 by algebraic polynomials. Using (5.47) in Section 5 with

k ¼ 4, together with the information that w0
1;5;w

0
7;5 2 V 4ð�1; 1Þ, we have

kw0 � ½wP
n �

0kL2

kw0kL2

6Cn�4 kw0kV 4

kw0kL2

; for w ¼ w1;5 or w7;5: ð3:16Þ

Remark 3.5. For the sake of simplicity, we are using Sobolev-type spaces with integer orders. For

sharper error estimates, we have to use Besov spaces with fractional order. Using these spaces, it is pos-
sible to establish the rates of convergence, Oðn�ðc�1=2ÞÞ, for algebraic polynomial approximation, and

Oðn�minðc�1=2;bþ1=2ÞÞ, for trigonometric approximation. These orders were seen in Fig. 1 and were stated in

items (a) and (c) near the end of Section 1.

Smoothness of a function involves more than just function space inclusions; it also involves the sizes of

the norms of the function. We have noted that both w0
1;5 and w0

7;5 belong to H 4ð�1; 1Þ, and hence to

V 4ð�1; 1Þ. But from Fig. 1 we see that EP
n for w7;5 is much larger than the EP

n for w1;5 for the same value of n.

To understand this difference, we report kw0kHk=kw0k0 and kw0kV k=kw0k0, for k ¼ 0; . . . ; 4, in Table 1, with
w ¼ w1;5 and w7;5.

We see that the V k-norms (normalized) of w0
7;5 are larger than the corresponding V k-norms of w0

1;5 for

k P 1; specifically, kw0
1;5kV k=kw0k0 < kw0

7;5kV k=kw0k0. Therefore we say that w0
1;5 is ‘‘smoother’’ than w0

7;5,

even though they belong to the same space V 4ð�1; 1Þ. Hence, w0
1;5 can be better approximated by algebraic

polynomials than can w0
7;5. For a further qualitative understanding of this issue, see [2].

We also note that in classical finite element analysis, function inclusions are usually considered in Hk, and

the Hk-norm does not allow singularities at the endpoints of the interval of definition. Therefore, the error

estimate for polynomial approximation of a function with end-point singularities, considered in Hk, can be
large, as compared to an error estimate with the function considered in V k. In fact, we see from Table 1 that

the ratio of kw0kHk=kw0kL2
to kw0kV k=kw0kL2

for w ¼ w0
1;5, which has an end point singularity, is greater than

Table 1

The seminorms kw0kHk=kw0k0 and kw0kV k=kw0k0 of the function defined in (1.11) for b ¼ 1, 7 and c ¼ 5

k b ¼ 1, c ¼ 5 b ¼ 7, c ¼ 5

kw0kHk=kw0k0 kw0kV k=kw0k0 kw0kHk=kw0k0 kw0kV k=kw0k0
0 1.0000 1.0000 1.0000 1.0000

1 7.9912 3.4847 6.0699 5.8676

2 39.237 12.172 46.027 43.048

3 132.13 41.266 421.78 375.68

4 313.39 126.21 5372.7 4113.5

Note that kw0kV k=kw0k0 for ðb; cÞ ¼ ð1; 5Þ is much smaller than for ðb; cÞ ¼ ð7; 5Þ. Also the ratio of kw0kHk=kw0k0 to kw0kV k=kw0k0 for

ðb; cÞ ¼ ð1; 5Þ is larger than for ðb; cÞ ¼ ð7; 5Þ.
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for w ¼ w0
7;5, which does not. This suggests that it is better to consider a function in V k when assessing

approximation by algebraic polynomials.

We end this section with a comment that (5.48), which was used to establish (3.15), can also be un-

derstood in terms of periodic extensions and Fourier series. This idea has been discussed in [2].

4. Assessment of the effectiveness of approximating functions

In this section we define the concepts in terms of which we will assess the effectivity of specific families of
basis functions.

Suppose the function we wish to approximate is included in a Hilbert space V, with norm k � kV , and we

wish to measure the approximate error in the norm k � kH , whereH is a Hilbert space that containsV. We will

consider sequences U ¼ ð/1;/2; . . .Þ of approximating shape functions in H, and assume U is a basis, i.e., is

linearly independent (/1; . . . ;/n is linearly independent for each n) and complete (/ is linearly dense in H).

We let

SðU; nÞ � spanð/1; . . . ;/nÞ; ð4:1Þ

and define

WðU; n; V ;HÞ ¼ sup
u2V

kukV 6 1

inf
/2SðU;nÞ

ku � /kH : ð4:2Þ

We will refer to WðU; n; V ;HÞ as the sup–inf for the basis U. It is immediate that

inf
/2SðU;nÞ

ku � /kH 6WðU; n; V ;HÞkukV ; for all u 2 V : ð4:3Þ

This is the fundamental estimate for the best H-approximation of an arbitrary u 2 V by U 2 SðU; nÞ. Note

that WðU; n; V ;HÞ measures the approximability of the function in the V-unit ball that is most difficult to

approximate.

Given two families U1 and U2 of basis functions, we consider the ratio

jðU1;U2; n; V ;HÞ ¼ WðU1; n; V ;HÞ
WðU2; n; V ;HÞ

ð4:4Þ

in terms of which we can assess the effectiveness of U1 as compared to U2, or vise versa. Roughly speaking,

if j is near 1, we have no reason to prefer one of U1 or U2 over the other. On the other hand, if j is much

smaller than 1, then we prefer U1; while if j is much larger than 1, then we prefer U2.

The above criteria compare the bases U1 and U2. It is also informative to compare U ¼ U1 with all other

bases U2, and thereby obtain a more absolute assessment the approximability properties of U. This can be
done with notion of n-width, introduced by Kolmogorov [18]. Let dnðV ;HÞ denote the n-width of the V-unit

ball in H:

dnðV ;HÞ ¼ inf
Xn�H

dimXn¼n

sup
u2V

kukV 6 1

inf
/2Xn

ku � /kH : ð4:5Þ

We can also express dnðV ;HÞ as follows:
dnðV ;HÞ ¼ inf

Xn�H
dimXn¼n

WðXn; n; V ;HÞ ¼ inf
/1;...;/n2H

linearly independent

WðU; n; V ;HÞ: ð4:6Þ
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An n-dimensional subspace eXXn ¼ eXXnðV ;HÞ of H is said to be optimal if

dnðV ;HÞ ¼ sup
u2V

kukV 6 1

inf
/2 ~XXn

ku � /kH ¼ WðeXXn; n; V ;HÞ: ð4:7Þ

Given a specific basis U, we will assess its effectiveness by considering the ratio

KðU; n; V ;HÞ � WðU; n; V ;HÞ
dnðV ;HÞ ¼ WðU; n; V ;HÞ

WðeXXn; n; V ;HÞ
: ð4:8Þ

We see that the ratio K compares U with the optimal subspace, and therefore K P 1. If K is bounded in n,

then, as above, U and eXXn have similar approximation properties. In this situation, we would use U since eXXn

is usually not explicitly known. But if KðU; n; V ;HÞ ! 1 as n ! 1, the choice of U will not yield efficient

approximations, as compared with eXXn.
We now discuss a situation we will return to in Section 5. Let V ¼ fV g be a family of spaces V � H . It

follows immediately from the definition of n-widths that KðU; n; V ;HÞP 1 for any V � V, and it is likely

that KðU; n; V ;HÞ > 1 for any particular V because the functions /i 2 U are not likely to be optimal in V.

Suppose, however, that KðU; n; V ;HÞ is almost bounded in the sense that for each 0 < r6 1, there is a

constant CðrÞ such that

KrðU; n; V ;HÞ � WðU; n; V ;HÞ
dnðV ;HÞ1�r 6CðrÞ for all n ¼ 1; 2; . . . and for all V 2 V: ð4:9Þ

In this situation we expect the /i 2 U to be effective for approximating any u 2 V for any V 2 V. We say

that the basis U is almost uniformly optimal with respect to V.

In the rest of this paper, we will use H ¼ L2ð�1; 1Þ, and will suppress H in dnðV ;HÞ and WðU; n; V ;HÞ,
i.e., we will write dnðV Þ and WðU; n; V Þ instead of dnðV ;HÞ and WðU; n; V ;HÞ, respectively. Similarly, we will

write KðU; n; V Þ and KrðU; n; V Þ.
For the space V we will use H a;kð�1; 1Þ, V a;kð�1; 1Þ, H a;k

oddð�1; 1Þ, or H a;k
evenð�1; 1Þ, i.e., one of the spaces

defined in Section 3. We will consider several specific bases U:

P ¼ f1; x; x2; . . .g;

C ¼ 1; cos
p
2
ðx

n
þ 1Þ; cos pðx þ 1Þ; . . .

o
;

S ¼ sin
p
2
ðx

n
þ 1Þ; sin pðx þ 1Þ; . . .

o
:

We note that SðP; n þ 1Þ ¼ Pn, the space of polynomials of degree n.

Typically, the effectiveness of finite element methods is assessed by comparing their performance on a
small set of benchmark problems. This could lead to misleading conclusions, unless these benchmark

problems represent a more-or-less clearly defined class of problems. The families of spaces we have con-

sidered, i.e., V ¼ fV g, where V ¼ H a;k, V a;k, H a;k
odd, or H a;k

even, represent well-defined large classes of solutions

of boundary value problems. The various notions––j, K, Kr, etc.––introduced in this section will be used to

understand and compare the performance of various bases U for the family V. We finally note that the

concepts defined in this section are not only relevant for one dimensional problems; they will also be used to

understand higher dimensional problems in a forthcoming paper.

5. Results on n-widths and sup–infs

In Section 4 we introduced the n-width, dnðV ;HÞ, and the sup–inf, WðU; n; V ;HÞ; these quantities are of
fundamental importance in assessing the approximation properties of bases U in H. The motivation for our
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study is the development of criteria for the selection of effective shape functions for use in the GFEM in
higher dimensions. Nevertheless, for the one dimensional problems we are elaborating on, as pointed out in

the last paragraph of Section 2, we can view the approximation in L2––using the notation of that paragraph,

we approximate u ¼ w0 in L2. Thus, throughout this section, we will let H ¼ L2ð�1; 1Þ.
In this section we will present several results on dn and W. They include: (a) characterization of dn and

W in terms of eigenvalues of certain variational eigenvalue problems; (b) dependence of dnðV Þ on n and

k for V ¼ H a;k
oddð�1; 1Þ, H a;kð�1; 1Þ, or V a;kð�1; 1Þ; and (c) dependence of WðU; n; V Þ on n and k for

V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ and for U ¼ P or C. Other main results of this section are Theorems 5.23,

5.24, and 5.25. Theorem 5.23 shows that algebraic polynomials are effective in approximating functions in a
wide family of Sobolev-type spaces. Theorems 5.24 and 5.25 show the limitations of algebraic polynomials

in approximating functions in certain other Sobolev-type spaces with restrictive boundary conditions.

These results explain the computational results presented in Section 6. We suggest this section be read

together with Section 6. For the proofs of the results in this section (see [2]).

Some of the theorems presented in this section are classical (e.g., Theorems 5.1 and 5.2), and some (e.g.,

Theorems 5.6, 5.7, 5.15–5.18) are observations that follow directly from relevant definitions or other results

in this paper. Nevertheless, we have highlighted them as theorems for completeness, and for the ease of

discussion of certain other results presented in this section.
We begin with the properties of dnðV ;HÞ; we will later discuss properties of WðU; n; V ;HÞ.

5.1. Characterization of dn(V ;H)

SupposeH and V are two Hilbert spaces with inner products and norms ðu; vÞV and kukV , and ðu; vÞH and

kukH , respectively, and assume

V � H ; compactly; ð5:1Þ

kukH 6CkukV ; for all u 2 V : ð5:2Þ
Then the n-width dnðV ;HÞ and the corresponding optimal subspace eXXn can be characterized in terms of the

eigenpairs of the following eigenvalue problem:

k 2 R; u 2 V ; u 6¼ 0;

ðu; vÞV ¼ kðu; vÞH ; for all v 2 V :
ð5:3Þ

Since V is compact in H, problem (5.3) has eigenvalues and eigenvectors

0 < k1 6 k2 6 � � � % þ1; u1; u2; . . . ;

and the eigenvectors (can be chosen to) satisfy

ðui; ujÞV ¼ kiðui; ujÞH ¼ kidi;j: ð5:4Þ
As a consequence of (5.2), we have C�1=2

6 k1.

We first state a fundamental theorem on n-widths.

Theorem 5.1. Suppose V and H satisfy (5.1) and (5.2). Then, for n ¼ 1; 2; . . . ;

dnðV ;HÞ ¼ k�1=2
nþ1 ð5:5Þ

and eXXn ¼ spanfu1; . . . ; ung ð5:6Þ
is an optimal subspace for dnðV ;HÞ.
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Remark 5.1. Kolmogorov [18] introduced the notion of n-width and proved Theorem 5.1 (see also [25]). It

is known [16,17] that there are optimal subspaces other than the ones given in (5.6); optimal subspaces can,

in fact, be selected to be spline subspaces [24]. Optimal subspaces are, however, generally not known ex-

plicitly.

The eigenvalue problem (5.3) is written in variational or weak form. In certain situations it is possible to

write it in strong form. For basic results on eigenvalue problem we refer to [9].

Theorem 5.1 can be used to determine dnðV ;HÞ numerically. The numerical values of dnðV ;HÞ presented
in Section 7 were computed via the eigenvalues of Problem (5.3).

We next state a general property of n-widths. This result is given in Theorem 1.1 in [25]; we include it

here for the sake of completeness.

Theorem 5.2. Suppose V and H satisfy (5.1) and (5.2). Then

dnþ1ðV ;HÞ6 dnðV ;HÞ: ð5:7Þ

In this subsection, we characterized n-widths and optimal subspaces in terms of the eigenvalues of a certain
eigenvalue problem, and stated a result showing that spans of the eigenvectors are associated optimal sub-
spaces.

We now state certain properties of dnðH a;k
oddÞ, dnðV a;kÞ, and dnðH a;kÞ. We first present the results on

dnðH a;k
oddÞ. We then consider dnðV a;kÞ and dnðH a;kÞ together, as they have many common properties.

5.2. Properties of dn(H a;k
odd)

The eigenpairs of (5.3) can be found analytically for V ¼ H a;k
odd; using these formulae we have:

Theorem 5.3. Suppose V ¼ H ak
oddð�1; 1Þ, as defined in (3.11), where k P 1 and ak 6¼ 0. Then, for n ¼ 1; 2; . . . ;

dnðH a;k
oddÞ ¼

Xk

j¼0

aj
n2jp2j

22j

" #�1=2

ð5:8Þ

and

eXXn ¼ span cos
jp
2
ðx

��
þ 1Þ

�n�1

j¼0

¼ SðC; nÞ ð5:9Þ

is an optimal subspace for dnðH a;k
oddÞ.

We now consider the dependence of dnðH a;k
oddÞ on n. We note that dnðV ;HÞ decreases as n increases,

as stated in Theorem 5.2. The next result is an asymptotic estimate for dnðH a;k
oddÞ, which shows that

dnðH a;k
oddÞ ! 0 as n ! 1.

Theorem 5.4. Suppose V ¼ H a;k
odd, where k P 1 and ak 6¼ 0. Then, for fixed k,

dnðH a;k
oddÞ6CðkÞn�k; ð5:10Þ

where CðkÞ ¼ a�1=2
k ð2k=pkÞ.
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We next consider the dependence of dnðH a;k
oddÞ on k.

Theorem 5.5. Let a be k-independent. Then, for fixed n,

dnðH a;kþ1
odd Þ6 dnðH a;k

oddÞ: ð5:11Þ

Remark 5.2. Recalling that a ¼ aðkÞ may depend on k, if we are more precise, (5.8) would read

dnðH a;k
oddÞ ¼

Xk

j¼0

ajðkÞ
n2jp2j

22j

" #�1=2

: ð5:12Þ

From (5.12) we see that for a fixed n, dnðH a;k
oddÞ is decreasing in k provided ajðiÞ6 ajði þ 1Þ, which is true

for a as defined in (3.7b). But this hypothesis is not satisfied by the a defined in (3.7c); nevertheless, ex-

amination of (5.12) shows that dnðH a;k
oddÞ decreases in k in this case.

Theorem 5.6. Let a be k-independent. Then, for fixed n,

lim
k!1

dnðH a;k
oddÞ ¼ 0 ð5:13Þ

if and only ifX1
j¼0

aj
n2jp2j

22j
is divergent: ð5:14Þ

Remark 5.3. We note that (5.14) is satisfied for all n for the choices of a given in (3.7a), (3.7d) and (3.7f).

Thus dnðH a;k
oddÞ ! 0 as k ! 1 for all n for these choices of a. We further note that if the series in (5.14)

converges, then dnðH a;k
oddÞP CðnÞ > 0 for all k. For a as in (3.7e), the series in (5.14) converges for all n, and

hence dnðH a;k
oddÞP CðnÞ > 0 for all k and n for this a. For a as in (3.7g), the infinite series in (5.14) converges

for n6 6 and diverges otherwise. Hence, for this choice of a, we have dnðH a;k
oddÞP CðnÞ > 0 for all k when

n6 6, and dnðH a;k
oddÞ ! 0 as k ! 1 when n P 7.

Remark 5.4. When a is k-dependent, we see from (5.12) that

lim
k!1

dnðH a;k
oddÞ ¼ 0

if and only if

lim
k!1

Xk

j¼0

ajðkÞ
n2jp2j

22j

 !
¼ 1: ð5:15Þ

The condition (5.15) is satisfied for all n by both of our k-dependent choices of a given in (3.7b)

and (3.7c). Hence dnðH a;k
oddÞ ! 0 as k ! 1 for both these choices of a. We further note that ifPk

j¼0 ajðkÞðn2jp2j=22jÞ is bounded in k for k-dependent a, then dnðH a;k
oddÞP CðnÞ > 0 for all k. We note

however that neither of our k-dependent a satisfy this hypothesis.

Remark 5.5. Let V ¼ H a;k
evenð�1; 1Þ, where k P 1 and ak 6¼ 0. Then, similar to Theorem 5.3,

dnðH a;k
evenÞ ¼

Xk

j¼1

aj
n2jp2j

22j

" #�1=2

;
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and

eXXn ¼ span sin
jp
2
ðx

��
þ 1Þ

�n

j¼1

¼ SðS; nÞ

is an optimal subspace for dnðH a;k
evenÞ.

We found explicit formulae for n-widths, dnðH a;k
oddÞ and dnðH a;k

evenÞ. We also indicated that the cosines are

optimal shape functions with respect to H a;k
odd, and the sines are optimal shapes functions with respect to H a;k

even,

for any choice of a and k. Thus we see that the trigonometric polynomials are ‘‘ideal’’ shape functions for any a
and k; but it should be stressed that they are ideal only for functions satisfying the boundary conditions (re-

straints) that inclusion in the spaces H a;k
odd of H a;k

even entail.

We showed that for fixed n, dnðH a;k
oddÞ decreases in k. Also, as expected, dnðH a;k

oddÞ decreases in n for fixed k.

5.3. Properties of dn(V a;k) and dn(H a;k)

We first state a result comparing dnðV a;kÞ and dnðH a;kÞ.

Theorem 5.7. For any a, k, and n we have

dnðH a;kÞ6 dnðV a;kÞ: ð5:16Þ

Next, the eigenpairs of (5.3) can be found analytically for V ¼ V a;k; using these formulae we have:

Theorem 5.8. Suppose V ¼ V a;kð�1; 1Þ, as defined in (3.14), where 16 k 61. Then

dnðV a;kÞ ¼
Xminðk;nÞ

j¼0

aj
ðn þ jÞ!
ðn � jÞ!

" #�1=2

ð5:17Þ

and eXXn ¼ spanfL0ðxÞ; . . . ; Ln�1ðxÞg ¼ SðP; nÞ ð5:18Þ
is an optimal subspace for dnðV a;kÞ (LjðxÞ is the jth degree Legendre polynomial).

Remark 5.6. Theorem 5.8 shows that V a;k are natural spaces for understanding approximation by poly-

nomials. Similar results hold also in higher dimensions when the domain is a cube. They were used in the

analysis of p-version of FEM (see [4,5]).

Remark 5.7. We note that for k-dependent a, the formula (5.17) in Theorem 5.8 should be written as

dnðV a;kÞ ¼
Xminðk;nÞ

j¼0

ajðkÞ
ðn þ jÞ!
ðn � jÞ!

" #�1=2

: ð5:19Þ

Remark 5.8. With V as in Theorems 5.3 and 5.8, we see that the optimal subspaces are independent of V,

i.e., they are independent of a and k in H a;k
odd and V a;k. Specifically, from Theorem 5.3, we see that SðC; nÞ is

optimal for dnðH a;k
oddÞ for all a and k, and from Theorem 5.8, SðP; nÞ is optimal for dnðV a;kÞ for all a and k.

We note that these are very exceptional situations. Usually optimal subspaces depend very strongly on the

space V.
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We now consider the dependence of dnðH a;kÞ and dnðV a;kÞ on n. We again note that dnðV ;HÞ decreases as
n increases, as stated in Theorem 5.2. The next theorem gives asymptotic estimates for dnðV a;kÞ and dnðH a;kÞ,
which show that they approach 0 as n ! 1.

Theorem 5.9. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where ak 6¼ 0. Then, for fixed k,

dnðH a;kÞ6 dnðV a;kÞ6CðkÞn�k; for n P k; ð5:20Þ
where CðkÞ ¼ a�1=2

k ðe=2Þk.

Theorem 5.10. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where a is as defined in (3.7b), (3.7d), (3.7e), (3.7f), or
(3.7g). Then, for n6 k, we have

dnðH a;kÞ6 dnðV a;kÞ6

ðð2nÞ!Þ�1=2
; for a as in ð3:7bÞ;

ðn!ð2nÞ!Þ�1=2
; for a as in ð3:7dÞ;

ðð2nÞ!=n!Þ�1=2
; for a as in ð3:7eÞ;

ð102nð2nÞ!Þ�1=2
; for a as in ð3:7fÞ;

ð10�2nð2nÞ!Þ�1=2
; for a as in ð3:7gÞ

8>>>>><>>>>>:
ð5:21Þ

showing that the rate of decrease of dnðH a;kÞ and dnðV a;kÞ with respect to n is higher than exponential, for large k.

Remark 5.9. The result of Theorem 5.10 shows the pre-asymptotic dependence of dnðH a;kÞ and dnðV a;kÞ on n
for fixed k. This result is valid only for n6 k, and not for all n. But, when k is large, the rate of decrease of

dnðH a;kÞ and dnðV a;kÞ is oðC�nÞ for any C > 1, i.e., higher than exponential rate as long as n6 k.

We next consider dnðV a;kÞ and dnðH a;kÞ in their dependence in k.

Theorem 5.11. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where a is k-independent. Then, for fixed n,

dnðH a;kþ1Þ6 dnðH a;kÞ ð5:22Þ
and

dnðV a;kþ1Þ6 dnðV a;kÞ: ð5:23Þ

Remark 5.10. (5.22) holds also for k-dependent a, where a ¼ aðkÞ is such that

H aðkþ1Þ;kþ1 � H aðkÞ;k and kukHaðkÞ;k 6 kukHaðkþ1Þ;kþ1 : ð5:24Þ

It is easily seen that a given in (3.7b) satisfies (5.24), and hence (5.22) holds for this a. Likewise (5.23) holds
for any k-dependent a ¼ aðkÞ satisfying

V aðkþ1Þ;kþ1 � V aðkÞ;k and kukV aðkÞ;k 6 kukV aðkþ1Þ;kþ1 : ð5:25Þ
It is easily seen that (5.25) holds for a given in (3.7b), and hence (5.23) holds for this a. We further note that

the hypothesis imposed on k-dependent a in Remark 5.2 implies conditions (5.24) and (5.25).

Remark 5.11. Conditions (5.24) and (5.25) do not hold for a ¼ aðkÞ defined in (3.7c). A careful examination

of (5.19) for this a shows that dnðV a;kÞ decreases in k and is less than 1 as long as k 6 n, and dnðV a;kÞ ¼ 1 for
k > n. The dependence of dnðH a;kÞ on k for this a is similar. From computational results in Section 6 (cf.

Table 5(c)), we see that dnðH a;kÞ decreases in k and is less than 1 for k 6 n. The result for k > n is given in the

next theorem.
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Eigenpairs of (5.3) can be found analytically for V ¼ H a;k for a given in (3.7c) when k > n; using these
formulae we have:

Theorem 5.12. Suppose V ¼ H a;kð�1; 1Þ, with a as in (3.7c) and k P 2. Then, for k > n,

dnðH a;kÞ ¼ 1 ð5:26Þ

and

eXXn ¼ spanfL0ðxÞ; . . . ; Ln�1ðxÞg ¼ SðP; nÞ ð5:27Þ

is an optimal subspace for dnðH a;kÞ.

Theorem 5.13. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where a is k-independent. Then, for fixed n,

lim
k!1

dnðH a;kÞ ¼ dnðH a;1Þ > 0 ð5:28Þ

and

lim
k!1

dnðV a;kÞ ¼ dnðV a;1Þ > 0: ð5:29Þ

Remark 5.12. The results of Theorem 5.13 is not generally true for k-dependent a. For one of our choices of
k-dependent a, namely for a as in (3.7b), one can easily show that, for fixed n,

lim
k!1

dnðV a;kÞ ¼ 0 ð5:30Þ

and from Theorem 5.7 and (5.30),

lim
k!1

dnðH a;kÞ ¼ 0: ð5:31Þ

But, for a defined in (3.7c), we have

lim
k!1

dnðV Þ ¼ 1; ð5:32Þ

where V ¼ H a;k or V a;k.

We derived explicit formulae for dnðV a;kÞ, and indicated that the Legendre polynomials are optimal shape

functions with respect to V a;k. Thus the relation of the Legendre polynomials to the spaces V a;k is similar to

relation of the trigonometric polynomials to the spaces H a;k
odd and H a;k

even. Nevertheless, the general features of the

Legendre polynomials and the trigonometric polynomials are very different. For the spaces H a;k such ideal

shape functions––ideal in the sense that one family of shape function is simultaneously optimal for all a and k––

do not exist. However, as we will see later, algebraic polynomial are ‘‘almost ideal’’ with respect to these

spaces.

We have shown that for fixed n, dnðV Þ, with V ¼ V a;k or H a;k, generally decreases in k. But it can also

increase in k for some a, and thus k dependence of dnðV Þ is different from that of dnðH a;k
oddÞ. Also, the rate of

decrease of dnðV Þ in n, for fixed k, is faster than exponential in the pre-asymptotic range, which is not true for

dnðH a;k
oddÞ.

So far we have discussed several properties of dnðV ;HÞ. We now consider WðU; n; V ;HÞ, defined in (4.2),

where V and H satisfy (5.1) and (5.2), and SðU; nÞ is defined in (4.1). We will consider the spaces

V ¼ V a;kð�1; 1Þ and H a;kð�1; 1Þ. Some of our results will be for the specific bases U ¼ P and C, which were

defined in Section 4.
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5.4. Characterization of W(U; n; V ;H)

We will characterize WðU; n; V ;HÞ in terms of the eigenvalues of a certain eigenvalue problem. Let pn be

the H-orthogonal projection onto SðU; nÞ ¼ spanf/1; . . . ;/ng. Consider the eigenvalue problem

u 2 V ;
ðu; vÞV ¼ ~kkððI � pnÞu; ðI � pnÞvÞH ; for all v 2 V :

�
ð5:33Þ

(5.33) is a well-posed eigenvalue problem with eigenvalues

0 < ~kknþ1 6
~kknþ2 6 � � �

The smallest eigenvalue, ~kknþ1, of this problem is characterized by

~kknþ1 ¼ inf
u2V

kuk2V
ku � pnuk2H

: ð5:34Þ

For another characterization of ~kknþ1, see [2].

We now present theorems relating WðU; n; V ;HÞ, ~kknþ1, and knþ1.

Theorem 5.14. If ~kknþ1 is the smallest eigenvalue of (5.33), then

WðU; n; V ;HÞ ¼ ~kk�1=2
nþ1 : ð5:35Þ

Theorem 5.15. If knþ1 is the ðn þ 1Þth eigenvalue of (5.3) and ~kknþ1 is the smallest eigenvalue of (5.33), then

knþ1 P ~kknþ1 ð5:36Þ
which is equivalent to

dnðV ;HÞ6WðU; n; V ;HÞ: ð5:37Þ

The next result characterizes WðU; n; V ;HÞ as an optimal error bound.

Theorem 5.16. Suppose each u 2 V can be approximated by /u 2 SðU; nÞ so that

ku � /ukH 6XðU; n; V ;HÞkukV : ð5:38Þ
Then

WðU; n; V ;HÞ6XðU; n; V ;HÞ: ð5:39Þ

Remark 5.13. In classical approximation theory, e.g., in the finite element method, we typically construct a

/u (e.g. by interpolation) and estimate the error with XðU; n; V ;HÞ. We note that dn, W, and XðU; n; V ;HÞ
are related by

dnðV ;HÞ6WðU; n; V ;HÞ6XðU; n; V ;HÞ ð5:40Þ

thus WðU; n; V ;HÞ is an optimal error bound for estimates of type (5.38).

Our next result concerns the dependence of WðU; n; V ;HÞ on n in a general setting.
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Theorem 5.17. For any V and H satisfying (5.1) and (5.2), and for any basis U in H, we have

WðU; n þ 1; V ;HÞ6WðU; n; V ;HÞ: ð5:41Þ

The sup–inf, WðU; v; V ;HÞ, was characterized in terms of the eigenvalues of a certain eigenvalue problem. This
characterization was used to establish the relation between dnðV ;HÞ and WðU; v; V ;HÞ. The relation follows
immediately, of course, from the definitions of the n-width and the sup–inf.

5.5. Properties of WðU; n; V Þ for V ¼ V a;k or H a;k with specific bases

We will present results for WðU; n; V Þ that are analogous to the results in Theorems 5.9, 5.11 and 5.13.

We first note from the definition of WðU; n; V Þ and (5.18) that

WðP; n; V a;kÞ ¼ dnðV a;kÞ: ð5:42Þ
The next result compares WðU; n; V a;kÞ and WðU; n;H a;kÞ for any basis U.

Theorem 5.18. For any a, k, and n, and for any basis U in L2 we have,

WðU; n;H a;kÞ6WðU; n; V a;kÞ: ð5:43Þ
We now consider the dependence of WðP; n; V Þ on n for V ¼ V a;k or H a;k. From Theorem 5.17, we know

that WðU; n; V Þ decreases as n increases. The next result gives an asymptotic estimate for W with U ¼ P,

which shows that WðP; n; V Þ ! 0 as n ! 1 for V ¼ V a;k or H a;k.

Theorem 5.19. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where ak 6¼ 0. Then, for fixed k, we have

WðP; n;H a;kÞ6WðP; n; V a;kÞ6CðkÞn�k; n > k; ð5:44Þ
where CðkÞ ¼ a�1=2

k ðe=2Þk.

Remark 5.14. From (5.42) and (5.43) with U ¼ P, it is clear that for n6 k, the estimate (5.21) in Theorem

5.10 is also valid for WðP; n;H a;kÞ and WðP; n; V a;kÞ. In other words, we can replace dnðH a;kÞ and dnðV a;kÞ in
(5.21) by WðP; n;H a;kÞ and WðP; n; V a;kÞ, respectively.

We now consider the dependence of WðC; n;H a;kÞ on n.

Theorem 5.20. Suppose V ¼ H a;kð�1; 1Þ, with ak 6¼ 0, and let U ¼ C. Then, for k ¼ 1, there are positive
constants C1ða1Þ and C2ða1Þ, which depend on a1 but are independent of n, such that

C1ða1Þ
n

6WðC; n;H a;kÞ6 C2ða1Þ
n

: ð5:45Þ

For k P 2, there are positive constants eCC1ða; kÞ and eCC2ða; kÞ, which depend on a and k but are independent of n,
such thateCC1ða; kÞ

n3=2
6WðC; n;H a;kÞ6

eCC2ða; kÞ
n3=2

: ð5:46Þ

Remark 5.15. From Theorems 5.18 and 5.20 it is clear that

WðC; n; V a;kÞP
C1ða1Þ

n
; for k ¼ 1
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and

WðC; n; V a;kÞP
~CC1ðk; aÞ

n3=2
; for k P 2:

Remark 5.16. Using (4.3) and Theorems 5.8 and 5.9, we obtain an estimate for the error in the best

L2-approximation by U ¼ P of functions in V a;k:

inf
v2SðP;nÞ

ku � vkL2
6CðkÞn�kkukV a;k ; for all u 2 V a;k; ð5:47Þ

where CðkÞ ¼ a�1=2
k ðe=2Þk

. Using (4.3) and Theorems 5.3 and 5.4, we obtain an estimate for the error in the

best L2-approximation by U ¼ C for functions in H a;k
odd:

inf
v2SðC;nÞ

ku � vkL2
6CðkÞn�kkukHa;k

odd

; for all u 2 H a;k
odd; ð5:48Þ

where CðkÞ ¼ a�1=2
k ð2=pÞk

. Estimates (5.47) and (5.48) explain certain computational results in Section 1; cf.

(3.15) and (3.16).

We now consider WðU; n;H a;kÞ and WðU; n; V a;kÞ in their dependence in k.

Theorem 5.21. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where a is k-independent. Let U be a basis in L2. Then,
for fixed n,

WðU; n;H a;kþ1Þ6WðU; n;H a;kÞ ð5:49Þ

and

WðU; n; V a;kþ1Þ6WðU; n; V a;kÞ: ð5:50Þ

Remark 5.17. This theorem is also valid for any k-dependent a provided a ¼ aðkÞ satisfies (5.24) and (5.25).

These conditions are true for the k-dependent a defined in (3.7b), as mentioned in Remark 5.10. Therefore

(5.49) and (5.50) hold for a defined in (3.7b).

Remark 5.18. It was mentioned in Remark 5.11 that conditions (5.24) and (5.25) are not valid for a ¼ aðkÞ
as defined in (3.7c). For this a and for U ¼ P, it is clear from (5.42) and Remark 5.11 that WðP; n; V a;kÞ
decreases in k and is less than 1 as long as k 6 n, and WðP; n; V a;kÞ ¼ 1 for k > n. Also, from (5.37) with

V ¼ H a;k and H ¼ L2, and Theorem 5.12, it is clear that WðP; n;H a;kÞP 1 for k > n, for this a and U ¼ P.
In fact, WðP; n;H a;kÞ ¼ 1 for k > n. We have observed from our computations [2] that, for this value of a,
WðP; n;H a;kÞ decreases in k and is less than 1, for k 6 n.

Theorem 5.22. Suppose V ¼ H a;kð�1; 1Þ or V a;kð�1; 1Þ, where a is k-independent. Let U be a basis in L2. Then,
for fixed n,

lim
k!1

WðU; n;H a;kÞP WðU; n;H a;1Þ > 0 ð5:51Þ

and

lim
k!1

WðU; n; V a;kÞP WðU; n; V a;1Þ > 0: ð5:52Þ

5614 I. Babu�sska et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5595–5629



Remark 5.19. The results of Theorem 5.22 are generally not true for k-dependent a. For a as defined in

(3.7b), it is clear from (5.42) and Remark 5.12 that WðP; n; V a;kÞ ! 0 as k ! 1 for a fixed n. Using this fact

in (5.43) with U ¼ P, we also see (for the same a) that WðP; n;H a;kÞ ! 0 as k ! 1. For a as defined in

(3.7c), it is clear from Remark 5.18 that limk!1 WðP; n; V Þ ¼ 1, for V ¼ V a;k or H a;k.

We have shown that k dependence of WðP; n;H a;kÞ for fixed n, and n dependence of WðP; n;H a;kÞ for fixed
k, are similar to the corresponding k and n dependence of dnðH a;kÞ. We have noted before that there does not

exist an ideal basis, independent of k and a, with respect to H a;k; but we see that polynomials behave almost like

an ideal basis with respect to these spaces. We have also shown that cosines perform much worse than algebraic

polynomials with respect to H a;k.

We also stated the dependence of WðU; n;H a;kÞ on k for fixed n for any basis U; in particular, we stated the

limiting behavior as k ! 1. This limit statement shows that for fixed n the difference between the approxi-

mation errors for ‘‘reasonably smooth’’ functions (k of moderate size) and for ‘‘very smooth’’ function ðk ¼ 1Þ
is not large.

We now present one of the main results of the paper.

5.6. Near-optimal performance of U ¼ P in H a;k

We know from Theorem 5.8 that the performance of the basis U ¼ P is optimal in the space V ¼ V a;k,

with H ¼ L2. We now show the effectiveness of U ¼ P for V ¼ H a;k, with H ¼ L2. To assess this effec-

tiveness, we use the ratio KðU; n; V ;HÞ introduced in (4.8), with U ¼ P, V ¼ H a;k, and H ¼ L2:

KðP; n;H a;kÞ ¼ WðP; n;H a;kÞ
dnðH a;kÞ :

It is clear from the definition of n-widths that KðP; n;H a;kÞP 1, and it is likely that KðP ; n;H a;kÞ > 1, since it

is unlikely that the polynomials are the optimal shape functions in any of the space H a;k. For the rest of the

results of this section, we consider a class of k-independent a satisfying aj 6 ajþ1. In the following theorem

we show that KðP; n;H a;kÞ is almost uniformly bounded in the sense defined at the end of Section 4.

Theorem 5.23. Suppose V ¼ H a;kð�1; 1Þ, where a is k-independent and satisfies aj 6 ajþ1, and H ¼ L2ð�1; 1Þ.
Then, for each 0 < r6 1, there is a constant CðrÞ, which depends on r but is independent of n and k, such that

KrðP; n;H a;kÞ ¼ WðP; n;H a;kÞ
dnðH a;kÞ1�r 6CðrÞ; for all n and k: ð5:53Þ

Remark 5.20. Because of (5.53), we say that algebraic polynomials are almost uniformly optimal with re-
spect to the family H a;k. We thus expect the algebraic polynomials to be effective for approximating any

u 2 H a;k for any k.

We presented one of the main results of the paper, namely, that algebraic polynomials are almost uniformly

optimal with respect to the family H a;k. This uniformity is with respect to k ¼ 1; 2; . . . and a satisfying aj 6 ajþ1.

Thus, polynomials are robust; they are effective in the GFEM for a larger class of problems. This feature is

also valid for higher dimensional problems. It explains why polynomial shape functions perform well in the

FEM.

We now present the other main results of this section.
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5.7. Limited performance of U ¼ P in H a;k
odd

The following results show that polynomials do not perform as well as the optimal shape functions for

the space H a;k
odd. We first recall from Theorem 5.3 that U ¼ C is optimal when V ¼ H a;k

odd. To assess the ef-

fectiveness of U ¼ P in H a;k
odd, we again consider the ratio K:

KðP; n;H a;k
oddÞ ¼

WðP; n;H a;k
oddÞ

dnðH a;k
oddÞ

:

Our next result establishes a lower bound for KðP; n;H a;k
oddÞ.

Theorem 5.24. Suppose V ¼ H a;k
oddð�1; 1Þ, where a is k-independent and satisfies aj 6 ajþ1. Then, for each n,

there is a positive constant CðnÞ, which depends on n but is independent of k, such that

WðP; n;H a;k
oddÞ

dnðH a;k
oddÞ

P CðnÞnk: ð5:54Þ

Remark 5.21. We note that, for a fixed n, the ratio WðP; n;H a;k
oddÞ=dnðH a;k

oddÞ
1�r

is also unbounded for 0 <
r6 1.

Theorem 5.25. Suppose V ¼ H a;k
oddð�1; 1Þ, where a is k-independent and satisfies aj 6 ajþ1. Then, for each

0 < r6 1, there is a positive constant CðrÞ, which depends on r but is independent of n and k, such that

WðP; n;H a;k
oddÞ

dnðH a;k
oddÞ

1�r 6CðrÞ; for k 6 n: ð5:55Þ

Remark 5.22. Theorem 5.25 shows that for a fixed k, the polynomials are nearly optimal in H a;k
odd in the

asymptotic range, i.e., when n > k. On the other hand, Theorem 5.24 shows that for large k, the polyno-

mials are far from optimal in H a;k
odd in the pre-asymptotic range, i.e., for n6 k.

We presented two results, one showing that algebraic polynomials are not recommended for pre-asymptotic

approximation of functions in the spaces H a;k
odd, the other showing that polynomials are nearly optimal in the

asymptotic range.

6. Numerical results and their interpretations

In the previous sections we have addressed the major theoretical issues involved in the selection of shape

functions for the GFEM, where the approximation was considered in L2, as pointed out in Sections 2 and 5.

In this section, we present detailed numerical results. These results illustrate the theoretical results in
Section 5, and the results in Section 5 explain the numerical results presented here.

In Table 2, we report values of the n-width, dnðH a;kÞ, for aj ¼ 1, as given in (3.7a). These values were

computed using Theorem 5.1 (see [2] for computational details).

We see that for fixed n, dnðH a;kÞ decreases as k increases, i.e., the n-width decreases as the smoothness of

the functions increase. But the decrease of dnðH a;kÞ with respect to k is visible only up to about k ¼ n þ 1,

after which dnðH a;kÞ appears to reach a positive limiting value: limk!1 dnðH a;kÞ > 0. This behavior illustrates

the result in Theorem 5.13.
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The values in Table 2 also reveal that for fixed k, dnðH a;kÞ decreases as n increases, and the larger the k,

the more rapid the decrease in n. This is the effect of the smoothness of the approximated functions. That

dnðH a;kÞ is decreasing in n, for fixed k, follows from Theorem 5.2. Fig. 2a and b are log–log plots of dnðH a;kÞ
versus n, for k ¼ 2 and 7. For k ¼ 2 we see that the slope is )2 for n P 2. Thus for k ¼ 2 the graph is in the
asymptotic range when n P 2, and the order of convergence is Oðn�2Þ, which is algebraic. This observed rate

matches the rate in Theorem 5.9.

Fig. 2b reveals additional features of dnðH a;kÞ. The graph first decreased sharply and is concave down,

then at about the point n ¼ k ¼ 7 (marked with an �), the sense of concavity changes and the magnitude of

the slope begins to decrease. This means that dnðH a;kÞ has not reached the asymptotic range at n ¼ 8, but the

change in concavity suggests that it will reach the asymptotic range for higher values of n, as was estab-

lished in Theorem 5.9. Because of this change in the concavity, the curve is referred to as S-shaped. That the

graph is sharply decreasing and concave down in the pre-asymptotic range is partially explained in The-
orem 5.10 and Remark 5.9. To see this we need only to note that any of the expressions on the right side of

estimate (5.21) in Theorem 5.10 are sharply decreasing and concave down in n. Based on Remark 5.9, we

say that dnðH a;kÞ is decreasing faster than exponentially. Fig. 2a shows similar, but much less striking,

behavior; in this graph, the � marks the point n ¼ k ¼ 2. Thus, the convergence of dnðH a;kÞ has two phases.

Table 2

The values of the n-width, dnðH a;kÞ, for aj ¼ 1

k n

1 2 3 4 5 6 7 8

1 0.537 0.303 0.208 0.157 0.126 0.106 0.906e)1 0.793e)1
2 0.503 0.150 0.613e)1 0.323e)1 0.197e)1 0.133e)1 0.953e)2 0.717e)2
3 0.501 0.130 0.272e)1 0.898e)2 0.391e)2 0.203e)2 0.118e)2 0.747e)3
4 0.501 0.129 0.222e)1 0.363e)2 0.103e)2 0.387e)3 0.176e)3 0.909e)4
5 0.501 0.128 0.217e)1 0.282e)2 0.383e)3 0.958e)4 0.323e)4 0.132e)4
6 0.501 0.128 0.217e)1 0.274e)2 0.285e)3 0.334e)4 0.757e)5 0.232e)5
7 0.501 0.128 0.217e)1 0.273e)2 0.275e)3 0.239e)4 0.249e)5 0.517e)6
8 0.501 0.128 0.217e)1 0.273e)2 0.274e)3 0.230e)4 0.172e)5 0.161e)6

We make several observations: (a) For fixed n, dnðH a;kÞ decreases in k, i.e., decreases as the smoothness of the functions increase, and

converges to a positive limit. For k > n þ 1, dnðH a;kÞ is essentially constant in k. (b) For fixed k, dnðH a;kÞ decreases in n, and the higher

the k, the more rapid the decrease in n. This is the effect of the smoothness of the approximated functions.

Fig. 2. The graphs of the n-width, dnðH a;kÞ, for aj ¼ 1, and k ¼ 2 and 7. The � indicates the point ðn; dnÞ for n ¼ k. (a) The graph is in

the asymptotic range when n P 2, and the rate of convergence is 2 (algebraic); in (b), the graph is eventually in the asymptotic range,

and the rate of convergence is 7 (algebraic). (b) The decrease of dnðH a;7Þ is higher than exponential in the pre-asymptotic range ðn < 8Þ.
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In the pre-asymptotic phase (n < k), the decrease is faster than exponential; whereas in the asymptotic
phase (n � k), the rate is algebraic. Such S-shaped curves also occur in the convergence of the error in the

p-version of the FEM [28].

In Table 3 we present the n-width, dnðV a;kÞ, for aj ¼ 1. These values were computed using Theorem 5.8.

We see from Table 3 that n-widths for V a;k have the same features as those for H a;k, although the

functions in V a;k are less smooth near the boundary. This is explained by the fact that Theorems 5.9–5.11

and 5.13 are valid for both H a;k and V a;k. Also from Theorem 5.7, we have dnðH a;kÞ6 dnðV a;kÞ, but we see

that the differences between dnðH a;kÞ and dnðV a;kÞ are not large.

Next, in Table 4, we present the values of dnðH a;k
oddÞ, which were computed using Theorem 5.3. We note

that inclusion in H a;k
odd, in contrast to inclusion in V a;k, constrains boundary behavior.

Table 4 shows that the values of dnðH a;k
oddÞ are qualitatively different than the values of dnðH a;kÞ and

dnðV a;kÞ; we mention two such differences. For fixed n, dnðH a;k
oddÞ ! 0 as k ! 1. This is explained in Remark

5.3. For fixed k, the order of convergence of dnðH a;k
oddÞ is Oðn�kÞ, as indicated in Theorem 5.4. But, in contrast

to dnðH a;kÞ and dnðV a;kÞ, the decrease in dnðH a;k
oddÞ is not faster than exponential in the pre-asymptotic range,

and the plot of dnðH a;k
oddÞ is not S-shaped. This is illustrated in Fig. 3(a) and (b), where we have plotted

dnðH a;2
oddÞ and dnðH a;7

oddÞ. These plots should be compared with Fig. 2(a) and (b).

Other properties of dnðH a;k
oddÞ, which can be derived from (5.8), are similar to those of dnðH a;kÞ and dnðV a;kÞ.

Table 3

The values of the n-width, dnðV a;kÞ, for aj ¼ 1

k n

1 2 3 4 5 6 7 8

1 0.577 0.378 0.277 0.218 0.180 0.152 0.132 0.117

2 0.577 0.180 0.867e)1 0.512e)1 0.339e)1 0.241e)1 0.180e)1 0.140e)1
3 0.577 0.180 0.342e)1 0.136e)1 0.690e)2 0.401e)2 0.255e)2 0.172e)2
4 0.577 0.180 0.342e)1 0.468e)2 0.161e)2 0.730e)3 0.383e)3 0.222e)3
5 0.577 0.180 0.342e)1 0.468e)2 0.499e)3 0.155e)3 0.637e)4 0.307e)4
6 0.577 0.180 0.342e)1 0.468e)2 0.499e)3 0.438e)4 0.124e)4 0.473e)5
7 0.577 0.180 0.342e)1 0.468e)2 0.499e)3 0.438e)4 0.327e)5 0.860e)6
8 0.577 0.180 0.342e)1 0.468e)2 0.499e)3 0.438e)4 0.327e)5 0.212e)6

(a) The qualitative behavior of dnðV a;kÞ is very similar to that of dnðH a;kÞ. (b) We have dnðH a;kÞ < dnðV a;kÞ, but the difference between

dnðV a;kÞ and dnðH a;kÞ is not large.

Table 4

The values of the n-width, dnðH a;k
oddÞ, for aj ¼ 1

k n

1 2 3 4 5 6 7 8

1 0.537 0.303 0.208 0.157 0.126 0.106 0.906e)1 0.793e)1
2 0.323 0.961e)1 0.440e)1 0.250e)1 0.161e)1 0.112e)1 0.824e)2 0.631e)2
3 0.202 0.306e)1 0.934e)2 0.398e)2 0.205e)2 0.119e)2 0.749e)3 0.502e)3
4 0.127 0.973e)2 0.198e)2 0.633e)3 0.261e)3 0.126e)3 0.681e)4 0.400e)4
5 0.808e)1 0.310e)2 0.421e)3 0.101e)3 0.332e)4 0.134e)4 0.620e)5 0.318e)5
6 0.514e)1 0.986e)3 0.892e)4 0.160e)4 0.423e)5 0.142e)5 0.563e)6 0.253e)6
7 0.327e)1 0.314e)3 0.189e)4 0.255e)5 0.538e)6 0.151e)6 0.512e)7 0.201e)7
8 0.208e)1 0.999e)4 0.402e)5 0.406e)6 0.685e)7 0.160e)7 0.466e)8 0.160e)8

The quantitative and qualitative character of this table is different from those of Tables 2 and 3. Here, for fixed n, we see that

dnðH a;k
oddÞ ! 0 as k increases.
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Table 5 reports values of dnðH a;kÞ for the other choices for a introduced in Section 3.
We make the following observations based on Table 5 and also give the rationale for our choices of a�s.

Fig. 3. The graphs of the n-width, dnðH a;k
oddÞ, for aj ¼ 1, and k ¼ 2 and 7. The rate of convergence of dnðH a;k

oddÞ, aj ¼ 1 is Oðn�kÞ. The
decrease is not faster than exponential in the pre-asymptotic range.

Table 5

The values of the n-width, dnðH a;kÞ, for various values of a

k n

2 5 8

(a) dn(H a;k), aj ¼ j!
2 0.115 0.141e)1 0.508e)2
5 0.972e)1 0.396e)4 0.122e)5
8 0.972e)1 0.282e)4 0.909e)9

(b) dn(H a;k), aj ¼ 1=j!
2 0.186 0.275e)1 0.101e)1
5 0.164 0.272e)2 0.133e)3
8 0.164 0.208e)2 0.167e)4

(c) dn(H a;k), a0 ¼ 1, ak ¼ 1, aj ¼ 0, for j 6¼ 1; k
2 0.176 0.200e)1 0.720e)2
5 1.00 0.449e)3 0.134e)4
8 1.00 1.00 0.186e)6

(d) dn(H a;k), aj ¼ (k
j), j6 k

2 0.133 0.195e)1 0.714e)2
5 0.439e)1 0.268e)3 0.122e)4
8 0.269e)1 0.365e)4 0.978e)7

(e) dn(H a;k), aj ¼ 102j

2 0.178e)2 0.200e)3 0.720e)4
5 149e)2 0.449e)8 0.134e)9
8 149e)2 0.319e)8 0.186e)14

(f) dn(H a;k), aj ¼ 1=102j

2 0.951 0.721 0.464

5 0.950 0.679 0.293

8 0.950 0.674 0.245

(a) The values of n-width depend significantly on a. (b) The qualitative features of these tables are similar, except in the case of the

Table 5c where the n-width does not decrease as k increases; in fact, it can increase.
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(a) From Theorem 5.11 and Remark 5.10, we have dnðH a;kþ1Þ6 dnðH a;kÞ for all choices of a except (3.7c),

which corresponds to Table 5(c). That dnðH a;kÞ is decreasing in k is clearly seen in all tables except Table

5(c); in this table we see that dnðH a;kÞ can, in fact, increase in k. That dnðH a;kÞ ¼ 1 for n < k in Table 5(c),

was confirmed in Theorem 5.12. The reason for choosing the a given in (3.7c) was to show that dnðH a;kÞ
may not be decreasing (in fact may increase) in k for certain a.

(b) For all choices for a, Theorem 5.9 shows that dnðH a;kÞ ¼ Oðn�kÞ for large n (in the asymptotic range).

Whereas, for all values of a, the tables show that dnðH a;kÞ decreases with n, we do not see the asymptotic

rate because we have only used small values of n, i.e., we are in the pre-asymptotic range. Specifically,
dnðH a;kÞ hardly decreases with n in Table 5(f). We chose the a given in (3.7g) to show that the decrease in

dnðH a;kÞ with respect to n may be extremely slow for small n.

(c) If aj P bj, then H a;k � Hb;k and kukHa;k 6 1, implies kukHb;k 6 1, so higher weights correspond to smoother

functions and smaller weights correspond to less smooth functions. Also, by the definition of n-widths,

we have dnðH a;kÞ6 dnðHb;kÞ. So n-widths are smaller for spaces with smoother functions, as noted fol-

lowing Table 2. Now, the weights in Table 5(a), (d), and (e) are larger than those in Table 5(b), (c),

and (f), respectively. So we should expect the n-widths in Table 5(a), (d), and (e) to be smaller than those

in Table 5(b), (c), and (f), respectively. We readily observe this. We chose these values of a also to show
the relationship between the smoothness of the functions in the underlying spaces and the magnitude of

a, and the corresponding effect on the n-widths.

(d) Since j! � 102j for large j (see Remark 3.4), we would expect dnðH a;kÞ to be much smaller for aj ¼ j!
than for aj ¼ 102j, based on the arguments given in item (c). We see, however, just the opposite in Table

5(a) and (e). This is not a contradiction, because j!� 102j for the values of j relevant to the values of k

used in these tables (i.e., j6 k 6 8). We chose a as in (3.7d) and (3.7f) also to illuminate this apparent

contradiction.

(e) Using the argument in item (c), we would expect dnðH a;kÞ to be much smaller for aj ¼ 10�2j than for
aj ¼ 1=j!. But comparing Table 5(b) and (f) we see just the opposite behavior. This is again not a con-

tradiction, and can be explained by following the arguments in item (d). a as in (3.7e) and (3.7g) was

chosen to illuminate this point.

(f) This principle does not strictly apply to Table 5(a) and (d) because the weights in Table 5(a) are not

larger than those in Table 5(d) for all j. But they are larger for large j, and we see that the n-widths

in Table 5(a) are smaller than those in Table 5(d) for n > 2, but the differences are not large. So the

principle does hold in this extended sense.

(g) From these tables it is clear that dnðH a;kÞ depends strongly on the choice of a.

We have computed dnðV a;kÞ for the a�s considered in Table 5, but have not included the values in this

paper because of space limitations. We note, however, that the qualitative features of dnðV a;kÞ are similar to

those of dnðH a;kÞ in Table 5, and the observations made after Table 5 are also valid for dnðV a;kÞ. The values
of dnðV a;kÞ for these a�s are given in [2].

Table 6 presents results for dnðH a;k
oddÞ. These values were computed using Theorem 5.3.

We know from Remarks 5.3 and 5.4 that dnðH a;k
oddÞ ! 0 as k ! 1 for all choices of a in Section 3

except aj ¼ 1=j! and aj ¼ 10�2j (for n6 6). The values in Table 6 illustrate this. The values in Table 6(f)
for n ¼ 8 do not show this feature (i.e., dnðH a;k

oddÞ ! 0 as k ! 1) clearly because, while the series in (5.14)

in Theorem 5.6 diverges, the coefficients aj ¼ 10�2j are very small and
Pk

j¼0 ajðn2jp2j=22jÞ grows slowly as

k increases. Also from Table 6(b), we see that the values of dnðH a;k
oddÞ are decreasing with k, but they

do not indicate that limk!1 dnðH a;k
oddÞP CðnÞ > 0. We note that one has to take large values of k to

see this effect. Thus, not all the observations made in item (a) following the Table 5 are valid for the

values in Table 6. However, the observations made in items (b) through (g) are valid for the values in

Table 6.
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So far we have addressed the n-widths, i.e., the performance of the best possible shape functions. In

Table 7 we report the values of the sup–inf, WðP; n;H a;kÞ, for aj ¼ 1, which indicate the approximability of

polynomials in the spaces H a;k. We refer to [2] for the computation of W.

Comparing Tables 7 and 2, we see that their qualitative and quantitative features are very similar. We

observe that dnðH a;kÞ6WðP; n;H a;kÞ, which was indicated in (5.37) of Theorem 5.15 with V ¼ H a;k, H ¼ L2

and U ¼ P. We also observe that WðP; n;H a;kþ1Þ6WðP; n;H a;kÞ, which was indicated by (5.49) of Theorem

5.21. Fig. 4(a) and (b) are log–log plots of WðP; n;H a;kÞ versus n for k ¼ 2 and 7, respectively. For k ¼ 2, we
see that WðP; n;H a;2) is in the asymptotic range and the rate of convergence is Oðn�2Þ, which was indicated

by Theorem 5.19. Fig. 4(b) reveals that the rate of decrease of WðP; n;H a;7Þ is faster than exponential in the

pre-asymptotic range, as suggested in Remark 5.14 (see also Remark 5.9). In this case we also have a typical

S-shaped curve. We note that WðP; n;H a;7Þ has not yet reached the asymptotic range for n6 8. The features

in Fig. 4 are similar to those in Fig. 2.

Table 8 reports the values of WðP ; n;H a;kÞ for various values of a.
Comparison of Tables 8 and 5 shows that dnðH a;kÞ6WðP; n;H a;kÞ, as expected for all our choices of a.

But the values of dnðH a;kÞ and WðP; n;H a;kÞ are quite similar. We note that the observations made after
Table 5 are also valid for the values in Table 8.

Tables 2, 3, 5, 7 and 8 show that the values of dnðV Þ and WðP; n; V Þ depend strongly on the spaces

V ¼ H a;k or V a;k. Therefore, the performance of a family of shape functions U should be assessed relative to

Table 6

The values of the n-width, dnðH a;k
oddÞ, for various values of a

k n

2 5 8

(a) dn(H a;k
odd), aj ¼ j!

2 0.697e)1 0.114e)1 0.447e)2
5 0.295e)3 0.305e)5 0.291e)6
8 0.522e)6 0.344e)9 0.801e)11

(b) dn(H a;k
odd), aj ¼ 1=j!

2 0.130 0.226e)1 0.890e)2
5 0.268e)1 0.352e)3 0.344e)4
8 0.122e)1 0.130e)4 0.315e)6

(c) dn(H a;k
odd), a0 ¼ 1, ak ¼ 1, aj ¼ 0, j 6¼ 1; k

2 0.101 0.162e)1 0.633e)2
5 0.327e)2 0.335e)4 0.319e)5
8 0.105e)3 0.691e)7 0.161e)8

(d) dn(H a;k
odd), aj ¼ (k

j), j6 k
2 0.920e)1 0.160e)1 0.629e)2
5 0.257e)2 0.321e)4 0.314e)5
8 0.716e)4 0.648e)7 0.157e)8

(e) dn(H a;k
odd), aj ¼ 102j

2 0.101e)2 0.162e)3 0.633e)4
5 0.327e)7 0.335e)9 0.319e)10
8 0.105e)1l 0.691e)15 0.161e)16

(f) dn(H a;k
odd), aj ¼ 1=102j

2 0.950 0.706 0.444

5 0.949 0.637 0.200

8 0.949 0.623 0.982e)1

In all the tables, except Table 6(f), dnðH a;k
oddÞ ! 0, as k increases.
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the performance of the optimal shape functions for V. Hence KðP; n; V Þ ¼ WðP; n; V Þ=dnðH a;kÞ, introduced
in Section 4, for V ¼ H a;k and V a;k, are effective measurements of the performance of polynomials in the

spaces H a;k and V a;k, respectively. Since the polynomials are optimal shape functions for the spaces V a;k, as

shown in Theorem 5.8, we have

KðP; n; V a;kÞ ¼ 1:

We know from Theorem 5.23 that for 0 < r6 1, KrðP; n;H a;kÞ is ‘‘almost bounded’’ in k and n provided

aj 6 ajþ1. But we note that KrðP; n;H a;kÞ ¼ KðP; n;H a;kÞ when r ¼ 0. From Tables 5 and 8, we see that

KðP; n;H a;kÞ is reasonably bounded for all our choices of a. This shows that polynomials are robust shape

functions for the spaces H a;k.

We now consider the performance of the trigonometric polynomials, i.e., we consider the basis C ¼
fcosðipðx þ 1Þ=2Þ; i ¼ 0; 1; . . .g in the space H a;k. Table 9 reports the values of WðC; n;H a;kÞ for aj ¼ 1.

The values in Table 9 are quite different from those in Table 7. We see that for fixed n, WðC; n;H a;kÞ is
nearly independent of k for k > 3, a feature not observed in Table 7. In Fig. 5(a) and (b), we have plotted

WðC; n;H a;kÞ versus n for k ¼ 1 and 5. For k ¼ 1 we see from Fig. 5(a) that the order of convergence of

Table 7

The values of the sup–inf, WðP; n;H a;kÞ, for aj ¼ 1

k n

1 2 3 4 5 6 7 8

1 0.537 0.303 0.215 0.170 0.141 0.121 0.106 0.946e)1
2 0.503 0.150 0.617e)1 0.349e)1 0.230e)1 0.165e)1 0.124e)1 0.973e)2
3 0.501 0.130 0.272e)1 0.911e)2 0.438e)2 0.251e)2 0.159e)2 0.108e)2
4 0.501 0.129 0.222e)1 0.365e)2 0.105e)2 0.444e)3 0.228e)3 0.131e)3
5 0.501 0.128 0.218e)1 0.283e)2 0.386e)3 0.985e)4 0.377e)4 0.176e)4
6 0.501 0.128 0.217e)1 0.275e)2 0.286e)3 0.337e)4 0.781e)5 0.274e)5
7 0.501 0.128 0.217e)1 0.274e)2 0.276e)3 0.241e)4 0.251e)5 0.535e)6
8 0.501 0.128 0.217e)1 0.274e)2 0.276e)3 0.231e)4 0.173e)5 0.163e)6

(a) The qualitative and quantitative features of this table are very similar to those of the Table 2. (b) We note that dnðH a;kÞ6
WðP; n;H a;kÞ. (c) Also WðP; n;H a;kþ1Þ6WðP; n;H a;kÞ.

Fig. 4. The graphs of the sup–inf, WðP; n;H a;kÞ, for aj ¼ 1, and k ¼ 2 and 7. (a) We see that the rate of convergence of WðP; n;H a;2Þ
with respect to n is Oðn�2Þ and (b) we see that the rate of decrease of WðP; n;H a;7Þ is higher than exponential in the pre-asymptotic

range, and that, WðP; n;H a;7Þ has yet not reached the asymptotic range.
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WðC; n;H a;1Þ is Oðn�1Þ, whereas, for k ¼ 5, the order of convergence of WðC; n;H a;5Þ is Oðn�1:5Þ as shown in
Fig. 5(b). These orders of convergence were confirmed in Theorem 5.20. Moreover, we note that these plots

Table 8

The values of the sup–inf, WðP; n;H a;kÞ, for various values a

k n

2 5 8

(a) W(P; n;H a;k), aj ¼ j!
2 0.115 0.164e)1 0.690e)2
5 0.972e)1 0.397e)4 0.162e)5
8 0.972e)1 0.282e)4 0.909e)9

(b) W(P; n;H a;k), aj ¼ 1=j!
2 0.186 0.320e)1 0.137e)1
5 0.164 0.285e)2 0.183e)3
8 0.164 0.216e)2 0.192e)4

(c) W(P; n;H a;k), a0 ¼ 1, ak ¼ 1, aj ¼ 0 for j 6¼ 1; k
2 0.176 0.234e)1 0.979e)2
5 1.00 0.449e)3 0.178e)4
8 1.00 1.00 0.186e)6

(d) W(P; n;H a;k), aj ¼ (k
j), j6 k

2 0.133 0.227e)1 0.967e)2
5 0.439e)1 0.275e)3 0.168e)4
8 0.269e)1 0.366e)4 0.105e)6

(e) W(P; n;H a;k), aj ¼ 102j

2 0.178e)2 0.234e)3 0.979e)4
5 0.149e)2 0.449e)8 0.178e)9
8 0.149e)2 0.319e)8 0.186e)14

(f) W(P; n;H a;k), aj ¼ 1=102j

2 0.951 0.744 0.540

5 0.950 0.707 0.387

8 0.950 0.703 0.343

(a) The values of WðP; n;H a;kÞ are sensitive to the choice of spaces. (b) The values of WðP; n;H a;kÞ are very similar to dnðH a;kÞ. (c) We

see that dnðH a;kÞ6WðP; n;H a;kÞ for all a. (d) In all the cases, except the case (c), we have WðP; n;H a;kþ1Þ6WðP; n;H a;kÞ.

Table 9

The values of the sup–inf, WðC; n;H a;kÞ, for aj ¼ 1

k n

1 2 3 4 5 6 7 8

1 0.537 0.303 0.208 0.157 0.126 0.106 0.906e)1 0.793e)1
2 0.503 0.150 0.811e)1 0.418e)1 0.319e)1 0.199e)1 0.175e)1 0.119e)1
3 0.501 0.130 0.646e)1 0.355e)1 0.256e)1 0.173e)1 0.143e)1 0.106e)1
4 0.501 0.129 0.631e)1 0.353e)1 0.253e)1 0.173e)1 0.142e)1 0.106e)1
5 0.501 0.128 0.629e)1 0.353e)1 0.253e)1 0.173e)1 0.142e)1 0.106e)1
6 0.501 0.128 0.629e)1 0.353e)1 0.253e)1 0.173e)1 0.142e)1 0.106e)1
7 0.501 0.128 0.629e)1 0.353e)1 0.253e)1 0.173e)1 0.142e)1 0.106e)1
8 0.501 0.128 0.629e)1 0.353e)1 0.253e)1 0.173e)1 0.142e)1 0.106e)1

(a) For large n and k, the values in Tables 7 and 9 are quite different. (b) For fixed n, the values WðC; n;H a;kÞ are nearly independent of

k for k > 3. (c) The basis C performs worse than the basis P for n, k P 3, and much worse for n, k large, but for k ¼ 1, C performs

better than P.

I. Babu�sska et al. / Comput. Methods Appl. Mech. Engrg. 191 (2002) 5595–5629 5623



do not have the S-shape that we saw in Fig. 4(b), which means that the rate of decrease of WðC; n;H a;kÞ is
not faster than exponential in the pre-asymptotic range for a fixed k.

We also see, comparing Tables 7 and 9, that the basis C performs worse than the basis P for n, k P 3,
and much worse for n, k large. In fact, using Theorems 5.19 and 5.20, one can show that jðC;P; n;H a;kÞ !
1 as n ! 1 for our choices of a and for k P 2, where j was introduced in Section 4. Therefore, based on

the recommendation in Section 4, the basis P should be preferred over the basis C for k P 2 when aj ¼ 1.

For k ¼ 1, we have jðC;P; n;H a;kÞ6 1, because C is the optimal basis for k ¼ 1. Also we see from Tables 7

and 9 that j � 0:84 (close to 1). Therefore we have no reason to prefer the basis P over the basis C or

vice versa in the pre-asymptotic range (e.g., n6 8) when k ¼ 1. We note however that j, for k ¼ 1, will

become smaller for large n, and we should prefer the basis C over the basis P in this case.

In the Table 10 we report the values of WðC; n;H a;kÞ for various values of a.
Comparison of Tables 8 and 10 shows that algebraic polynomials perform slightly better than trigo-

nometric polynomials when k is small (k ¼ 2), and algebraic polynomials perform much better when k is

moderately large (k ¼ 5 or 8)––except when aj ¼ 1=102j. In this case we see that WðP; n;H a;kÞ �
WðC; n;H a;kÞ for k ¼ 2; 5; 8. Furthermore, we note that for all other a, WðP; n;H a;kÞ sharply decreases with

increasing k, but WðP; n;H a;kÞ is nearly constant in k when aj ¼ 1=102j. This difference in behavior of

WðP; n;H a;kÞ can be explained as follows. WðU; n; V Þ measures the approximability of U for all functions in

the V-unit ball. For V ¼ H a;k with aj very small, as when aj ¼ 1=102j, functions in the unit ball may

have very large derivatives, and hence be unsmooth. Thus the values of WðP; n;H a;kÞ for moderate sized k

are about the same as WðP; n;H a;2Þ, explaining why WðP; n;H a;kÞ is nearly constant in k for small to

moderate sized k, for this a. One might expect the same for the case aj ¼ 1=j!. But 1=j! is not nearly as small

as 1=102j for moderate sized j ðj6 k 6 8Þ, and this effect does not so clearly show up in the values in Table

8(b).

We now consider the performance of polynomials, i.e., U ¼ P, in the spaces H a;k
odd, where aj ¼ 1. We note

that the functions in these spaces are restricted at the boundary, and U ¼ C is the optimal basis for these

spaces, as indicated in Theorem 5.3. In Table 11 we report the values of WðP; n;H a;k
oddÞ for aj ¼ 1.

We observe from Table 11 that for fixed n, WðP; n;H a;k
oddÞ decreases in k. As expected, comparing the

Tables 11 and 4, we see that the values in Table 11 are greater than the corresponding values in Table 4 for

all n, k. Also, by a simple calculation, one sees that KðP; n;H a;k
oddÞ increases in k for fixed n, as indicated by

Theorem 5.24. A careful calculation of KðP; n;H a;k
oddÞ (which we have not included here) shows that for fixed

k, KðP; n;H a;k
oddÞ first increases, then decreases, and again starts to increase slowly with increasing odd values

of n. The same is true also for n even. This shows that the polynomials do not perform well in H a;k
odd in the

Fig. 5. The graphs of the sup–inf, WðC; n;H a;kÞ, for aj ¼ 1, and k ¼ 1 and k ¼ 5. (a) We see that the rate of convergence of

WðP; n;H a;1Þ with respect to n is Oðn�1Þ and (b) we see that the rate of decrease of WðC; n;H a;5Þ is Oðn�1:5Þ.
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pre-asymptotic region, as indicated in Remark 5.22. The slow increase of KðP; n;H a;k
oddÞ with respect to n

also indicates the necessity of the assumption r > 0 in Theorem 5.25.

Table 10

(a–f) The values of the sup–inf, WðC; n;H a;kÞ, for various values of a

k n

2 5 8

(a) W(C; n;H a;k), aj ¼ j!
2 0.115 0.283e)1 102e)1
5 0.972e)1 0.242e)1 0.889e)2
8 0.972e)1 0.242e)1 0.889e)2

(b) W(C; n;H a;k), aj ¼ 1=j!
2 0.186 0.377e)1 0.155e)1
5 0.164 0.287e)1 0.134e)1
8 0.164 0.287e)1 0.134e)1

(c) W(C; n;H a;k), a0 ¼ 1, ak ¼ 1, aj ¼ 0, for j 6¼ 1; k

2 0.176 0.535e)1 0.194e)1
5 0.999 0.565 0.362

8 0.999 0.999 0.848

(d) W(C; n;H a;k), aj ¼ (k
j), j6 k

2 0.133 0.272e)1 0.110e)1
5 0.438e)1 0.122e)1 0.449e)2
8 0.269e)1 0.965e)2 0.354e)2

(e) W(C; n;H a;k), aj ¼ 102j

2 0.695e)2 0.277e)2 0.102e)2
5 0.693e)2 0.276e)2 0.101e)2
8 0.693e)2 0.276e)2 0.101e)2

(f) W(C; n;H a;k), aj ¼ 1=102j

2 0.951 0.722 0.468

5 0.950 0.680 0.334

8 0.950 0.676 0.310

Comparison of this table with Table 8 shows that the trigonometric polynomials perform much worse than the algebraic polynomials

except in the case aj ¼ 1=102j, where trigonometric polynomials perform slightly better.

Table 11

The values of the sup–inf, WðP; n;H a;k
oddÞ, for aj ¼ 1

k n

1 2 3 4 5 6 7 8

1 0.537 0.303 0.215 0.170 0.141 0.121 0.106 0.946e)1
2 0.323 0.961e)1 0.574e)1 0.348e)1 0.230e)1 0.165e)1 0.124e)1 0.973e)2
3 0.202 0.306e)1 0.257e)1 0.911e)2 0.437e)2 0.251e)2 0.159e)2 0.108e)2
4 0.127 0.154e)1 0.154e)1 0.274e)2 0.100e)2 0.443e)3 0.228e)3 0.131e)3
5 0.808e)1 0.973e)2 0.973e)2 0.859e)3 0.364e)3 0.984e)4 0.376e)4 0.176e)4
6 0.514e)1 0.618e)2 0.618e)2 0.272e)3 0.205e)3 0.271e)4 0.757e)5 0.274e)5
7 0.327e)1 0.393e)2 0.393e)2 0.128e)3 0.128e)3 0.827e)5 0.238e)5 0.535e)6
8 0.208e)1 0.250e)2 0.250e)2 0.816e)4 0.816e)4 0.260e)5 0.127e)5 0.136e)6

(a) For a fixed n, WðP; n;H a;k
oddÞ decreases as k increases. (b) For large n and k, the values in Table 11 are much bigger than the

corresponding values in Table 4. (c) The system P performs worse than the system C, which is optimal, for large values of n and k.
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We did not discuss the performance of the basis U ¼ S in the space H a;k
odd as its performance is very

similar to U ¼ C in the space H a;k
odd; see Remark 5.5. Also, we have not discussed the performance of the

basis U ¼ S in the space H a;k.

From the Tables 2–11 we can draw the following conclusions:

(a) Algebraic polynomials perform almost as well as the optimal shape functions in the spaces H a;k and

hence they are robust.

(b) Trigonometric polynomials perform much worse than algebraic polynomials if the approximated func-

tion belongs to H a;k, with k P 2. For 0 < k 6 1 (more precisely for 0 < k 6 1:5), trigonometric polyno-
mials perform marginally better than algebraic polynomials. In fact, trigonometric polynomials are the

optimal shape functions when k ¼ 1, and hence they are comparable with polynomials only when

k ¼ 1, and are not comparable for k > 1.

(c) Polynomials do not perform as well as the optimal shape functions in the spaces H a;k
odd in the pre-asymp-

totic range.

(d) We note that the spaces H a;k are uniform in x. The above conclusions are not necessarily correct when

the underlying spaces are not uniform in x, e.g., in spaces with norms ð
Pk

j¼0 ajkqjðxÞuðjÞk20Þ
1=2

, where the

weight functions qjðxÞ depend on x. We note, however, that the conclusions are valid for the spaces V a;k

(with Jacobi weights), which are not uniform in x.

Finally, we return to the functions wb;c introduced in (1.11). As indicated in (4.3) we can estimate EP
n

(defined in (1.10)) using WðP; n; V ;HÞ, with H ¼ L2 and V ¼ H a;k or V a;k with aj ¼ 1:

EP
n ðwb;cÞ6WðP; n þ 1;H a;kÞ

kw0
b;ckHa;k

kw0
b;ckL2

ð6:1Þ

and

EP
n ðwb;cÞ6WðP; n þ 1; V a;kÞ

kw0
b;ckV a;k

kw0
b;ckL2

; ð6:2Þ

for n ¼ 1; 2; . . . Here n is the degree of the polynomial approximating w0
b;c, and n þ 1 is the dimension of the

space of polynomials of degree 6 n. Now the expression on the right-hand side of (6.1) can be calculated

from of Tables 1 and 7; and the right-hand side of (6.2) can be evaluated using Tables 1 and 3 (note that

WðP; n þ 1; V a;kÞ ¼ dnþ1ðV a;kÞ). These values are reported in Table 12.

The values in Table 12 reflect various function space inclusions for w0
b;c. Specifically, w0

b;c can be viewed as
belonging to H a;k or V a;k for various k with aj ¼ 1, each inclusion providing an estimate for EP

n ðwb;cÞ. The
values in Table 12 should be compared with the values for EP

n ðwb;cÞ displayed in Fig. 1. The numerical

values of EP
n ðwb;cÞ are given in [2]. These comparisons show that the estimates are very pessimistic, although

in a certain sense they are optimal (see Remark 5.13). They are pessimistic because there are other functions

in the spaces H a;k or V a;k with the same norm as wb;c, but which are more poorly approximated by P. This

shows that an error estimator that uses the value of a particular norm as the only available information on

the approximated function can be very pessimistic. Nevertheless, such estimates provide the correct rate for

approximation errors.
Furthermore, from these tables we see that for a given n, there is an optimal space––H a;k with a certain k

or V a;k with a certain k, with aj ¼ 1––which leads to the best available estimate. Usually the magnitude of

higher order derivatives are larger than that of the lower order derivatives. Hence a priori error estimates

for low n should be based on spaces where the size of the higher derivatives is not taken into account, i.e.,

we should choose functions space inclusions with low k.
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7. Conclusions

This is the first in a series of papers addressing the problem of selection of shape functions for the

GFEM. We focused on the principles that should govern the selection of effective shape functions, and

elaborated in detail the one dimensional case.

Shape functions should have good approximation properties relative to the available information on the

approximated function, typically the unknown solution of a boundary value problem. The available in-

formation on the approximated function is necessarily fuzzy. It is usually characterized by inclusion in a
family V of function spaces V. The function spaces V could be, e.g., H a;k, H a;k

even, H a;k
odd, or V a;k––the spaces

introduced in Section 3. The smoothness of the functions in the spaces H a;k, H a;k
even, or H a;k

odd is characterized

uniformly in the space variable x, i.e., the definitions of the norms in these spaces use only constant weight

functions. We note, however, that the characterization of smoothness may be non-uniform in x, as with

V a;k. We also note that the available information on the approximated function may include its boundary

conditions, as with H a;k
even or H a;k

odd.

As pointed out in Section 2, we can view the approximation in L2. Thus the spaces V we consider are

subspaces of L2. The shape functions (basis) U � L2, selected to approximate the unknown functions,
should have good approximation properties relative to the entire familyV, i.e., they should be robust inV.

A good measure of the effectiveness of U in V is given by KðU; n; V Þ, introduced in Section 4, which is the

ratio of the worst possible approximation error in L2 of functions in the unit ball in V using U, and the same

error using the optimal shape functions, UðV Þ ¼ eXXnðV ;HÞ, in the sense of n-widths. Then the sizes of

KðU; n; V Þ, for all V 2 V, is a measure of the robustness of U relative to V.

Table 12

The estimates of EP
n ðwb;cÞ for b ¼ 1, c ¼ 5 and b ¼ 7, c ¼ 5 using WðP; n þ 1;H a;kÞ and WðP; n þ 1; V a;kÞ with aj ¼ 1

k n

1 2 3 4 5 6 7

(a) Estimate of EP
n (wb;c) for b ¼ 1, c ¼ 5 using W(P; n þ 1;H a;k), aj ¼ 1

1 2.42 1.72 1.36 1.13 0.97 0.85 0.76

2 5.89 2.42 1.37 0.90 0.65 0.49 0.38

3 17.2 3.59 1.20 0.58 0.33 0.21 0.14

4 40.4 6.96 1.14 0.33 0.14 0.072 0.041

(b) Estimate of EP
n (wb;c) for b ¼ 7, c ¼ 5 for W(P; n þ 1;H a;k), aj ¼ 1

1 1.84 1.31 1.03 0.86 0.73 0.64 0.57

2 6.90 2.84 1.61 1.06 0.76 0.57 0.45

3 54.8 11.5 3.84 1.85 1.06 0.67 0.46

4 693.1 119.3 19.61 5.64 2.39 1.22 0.70

(c) Estimate of EP
n (wb;c) for b ¼ 1, c ¼ 5 for W(P; n þ 1; V a;k), aj ¼ 1

1 1.35 0.97 0.76 0.63 0.53 0.46 0.41

2 2.19 1.06 0.62 0.41 0.29 0.22 0.17

3 7.43 1.41 0.56 0.28 0.17 0.11 0.071

4 22.7 4.32 0.59 0.20 0.092 0.048 0.028

(d) Estimate of EP
n (wb;c) for b ¼ 7, c ¼ 5 using W(P; n þ 1;V a;k), aj ¼ 1

1 2.22 1.63 1.28 1.06 0.89 0.77 0.69

2 7.75 3.73 2.20 1.46 1.04 0.77 0.60

3 67.6 12.8 5.11 2.59 1.51 0.96 0.65

4 740.4 140.6 19.3 6.62 3.00 1.58 0.91

Note the large overestimates for many of the function space inclusions for wb;c.
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Using these ideas, we have shown:

• If the only available information on the unknown function is related to smoothness characterized uni-

formly in x by inclusion in the class V of Sobolev-type spaces, H a;k, then polynomial shape functions

are robust, and they perform roughly as well as the optimal shape functions, in the sense of n-widths,

as determined by the spaces V ¼ H a;k. Hence polynomial shape functions are recommended for approx-

imation of such functions.

• If, on the other hand, some additional information is available, if, e.g., the function is constrained by

certain boundary conditions, then polynomial shape functions may perform––in the sense of robust-
ness––very poorly in the pre-asymptotic range, and some other shape functions should be used. We have

shown this for V ¼ H a;k
odd.

We have also observed that polynomial shape functions are optimal in the sense of n-widths when the

approximated functions are in spaces V a;k. The characterization of smoothness of the functions in this space

is non-uniform in x. We note that we have not studied any other class of function spaces with this feature.

These recommendations are based on the rigorous theory presented in Section 5. We have also presented

detailed numerical computations in Section 6. These computations illustrate our theoretical results; and our
theoretical results explain the observed features of our numerical computations.

In future papers the framework of this paper will be used to explore the problem of selection of shape

functions in higher dimensions.
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