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In this paper, we present the effect of numerical integration on meshless methods with shape functions
that reproduce polynomials of degree k P 1. The meshless method was used on a second order Neumann
problem and we derived an estimate for the energy norm of the error between the exact solution and the
approximate solution from the meshless method under the presence of numerical integration. This esti-
mate was obtained under the assumption that the numerical integration scheme satisfied a form of
Green’s formula. We also indicated how to obtain numerical integration schemes satisfying this property.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Meshless methods (MM) were developed in early 1990s for
numerically solving partial differential equations (PDE). This initia-
tive was stimulated by the difficulties in mesh generation when
available methods, e.g., the Finite Element Method (FEM), were
used to solve various complex problems in engineering.

It was recognized from the very beginning of the development
of MM that numerical integration posed bigger challenge in this
method than the FEM, and the issue was discussed in various
engineering papers, e.g., [5,8,9,11,12,10,14–16]. In FEM, the shape
functions are piecewise polynomials of degree k P 1 and a careful
mathematical analysis of the effect of numerical integration in FEM
was published 30 years ago in [13]. The analysis required that the
numerical integration in FEM, when applied to PDEs with constant
coefficients, must evaluate the stiffness matrix exactly. This is eas-
ily achieved since the integrands of the elements of the stiffness
matrix of FEM are polynomials of degree 2k� 2. The analysis also
exploited the fact that ‘th order derivatives of the shape functions
vanish locally (on each triangle) for ‘ P kþ 1. In contrast, the
shape functions used in MM are not piecewise polynomials and
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their ‘th order derivatives grow with ‘. Moreover, the stiffness
matrix cannot be evaluated exactly for PDEs with constant coeffi-
cients. Thus the shape functions used in MM lack the two most
important features of the shape functions of FEM. Numerical inte-
gration in MM is a bigger challenge primarily because of the lack of
these features.

Many interesting ideas on the use of numerical integration in
MM were presented in the engineering papers mentioned above,
but to the best of our knowledge, a careful mathematical analysis
of the effect of numerical integration in MM was first reported in
[4]. It is shown in this paper that the error in the approximate solu-
tion, obtained from MM with standard numerical quadrature, does
not converge. It is then shown that if the stiffness matrix satisfies a
condition referred to as the zero row sum condition, the energy
norm of the error in the approximate solution is Oðhþ �gÞ, where
h is the standard discretization parameter related to the diameters
of the supports of the shape functions and �g is the parameter indi-
cating the accuracy of the underlying numerical quadrature. Thus
MM, with numerical integration, does not yield optimal order of
convergence unless �g ¼ OðhÞ. However, the analysis in [4] uses
an assumption on the approximation space that is difficult to ver-
ify. We further note that the analysis is restricted to MMs with
shape functions that reproduced polynomials of degree k ¼ 1; it
is not clear that the analysis can be extended to k > 1.

In this paper, we present a mathematical analysis of the effect of
numerical integration on MM, where the quadrature is required to
satisfy certain conditions that are different from those required in
[4]. We also indicate how to obtain numerical quadrature schemes
satisfying these conditions. Moreover, in contrast to [4], the
ation on meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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analysis presented in this paper is valid for k P 1. We have shown
in this paper that the energy norm of the error in the approximate
solution obtained from MM with numerical quadrature (satisfying
certain conditions) is Oðhk�1ðhþ gÞÞ, where g is a parameter related
to the accuracy of the numerical quadrature and h is the standard
discretization parameter. Thus MM does not yield optimal order of
convergence for g–OðhÞ. Certainly if g ¼ OðhÞ, we have the optimal
order of convergence. It is important to note that the parameter g
(see (3.10)) associated with the particular numerical integration
used in the FEM, namely the Gauss rule, is OðhÞ. We mention that
the numerical integration used in this paper yields a non-symmetric
stiffness matrix. But this does not pose a serious problem since
non-symmetric linear systems could be solved efficiently by itera-
tive methods.

We address the application of MM on a second order Neumann
boundary value problem in this paper. The outline of this paper is
as follows: In Section 2, we present the preliminaries, a variational
formulation based on Lagrange multipliers and the associated MM.
In Section 3, we present a numerical quadrature scheme, together
with associated assumptions on the scheme. We present our main
results in Section 4, which are Theorems 4.1 and 4.2. In Section 5,
we present a procedure that indicates how to obtain quadrature
schemes satisfying an assumption given in Section 3. We also pres-
ent numerical experiments in this section to illuminate our main
results presented in Section 4. Some of these numerical experi-
ments also indicate the necessity of one of the main assumptions
on the quadrature given in Section 3. We provide a few remarks
and a brief summary of the paper in Section 6.

2. Preliminaries and meshless method

Let X � Rd be a bounded domain with Lipschitz continuous
boundary C � @X. We denote the usual Sobolev space by Wm;pðXÞ
with the norm and semi-norm, kukWm;pðXÞ and jujWm;pðXÞ, respec-
tively. We will consider only p ¼ 2 and 1 in this paper; Wm;2ðXÞ
will be denoted by HmðXÞ. Moreover, kukL2ðXÞ; kukL1ðXÞ; kukL2ðCÞ,
and kukL1ðCÞ will denote the usual norms on L2ðXÞ, L1ðXÞ; L2ðCÞ,
and L1ðCÞ, respectively.

Exact problem:
We consider the standard Neumann problem

� Du ¼ f in X;
@u
@n
¼ g; on C � @X;

ð2:1Þ

where @
@n is the unit outward normal derivative to C and f 2 L2ðXÞ;

g 2 L2ðCÞ satisfy the compatibility conditionZ
X

f ðxÞdxþ
Z

C
gðsÞds ¼ 0: ð2:2Þ

The associated variational formulation of (2.1) is given by

Find u 2 H1ðXÞ satisfying;

Bðu; vÞ ¼ LðvÞ; 8v 2 H1ðXÞ;
ð2:3Þ

where

Bðu;vÞ �
Z

X
ru � rv dx and LðvÞ �

Z
X

fv dxþ
Z

C
gv ds:

The compatibility condition (2.2) can be written as Lð1Þ ¼ 0. It is
well known that the problem (2.3) has a unique solution up to a
constant. A standard way of specifying a unique solution is to
consider a linear functional U : L2ðXÞ ! R with Uð1Þ > 0 and seek
the unique solution u satisfying UðuÞ ¼ 0. The functional UðuÞ, for
example, could be chosen to be UðuÞ ¼ 1

jXj
R

X udx or UðuÞ ¼R
X uudx, where uðxÞ is smooth. Let
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
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HU ¼ ðv ;lÞ 2 H1ðXÞ � R : kðv ;lÞk2
HU
� jv j2H1ðXÞ þ jUðvÞj

2 þ l2 <1
n o

:

HU is a Hilbert space and it is easy to show that there exist positive
constants C1;C2, such that

C1kðv ;lÞk2
HU
6 kvk2

H1ðXÞ þ l2
6 C2kðv ;lÞk2

HU
; 8 ðv ;lÞ 2 HU:

ð2:4Þ

We consider an alternate variational problem given by

Find ðu; kÞ 2 HU satisfying;
BUðu; k; v ;lÞ ¼ LðvÞ; 8ðv ;lÞ 2 HU;

ð2:5Þ

where

BUðu; k; v;lÞ � Bðu;vÞ þ kUðvÞ þ lUðuÞ;

and Bðu; vÞ and LðvÞ are defined above.

Remark 2.1. We note that the problem (2.5) can equivalently be
written as the system

Bðu; vÞ þ kUðvÞ ¼ LðvÞ; 8v 2 H1ðXÞ;
lUðuÞ ¼ 0; 8l 2 R:

The second equation gives the constraint UðuÞ ¼ 0. Moreover, it is
well known that the first equation is the Euler–Lagrange equation
for the constrained extremal problem

min
v2H1ðXÞ
UðvÞ¼0

JðvÞ;

where JðvÞ ¼ 1
2 Bðv;vÞ � LðvÞ:k is the Lagrange multiplier and the

problem (2.5) is known as the variational problem based on La-
grange multiplier.

To establish that the problem (2.5) has a unique solution, we
present the following result.

Lemma 2.1

(a) There is a constant C > 0 such that
ation o
jBUðu; k; v ;lÞj 6 Ckðu; kÞkHU
kðv ;lÞkHU

; 8ðu; kÞ; ðv ;lÞ 2 HU:

ð2:6Þ
(b) There exists C > 0 such that
C < inf
ðu;kÞ2HU

sup
ðv;lÞ2HU

BUðu; k; v ;lÞ
kðu; kÞkHU

kðv ;lÞkHU

: ð2:7Þ
(c) For any ðv ;lÞ 2 HU satisfying kðv ;lÞkHU
– 0,
0 < sup
ðu;kÞ2HU

jBUðu; k; v;lÞj:
Proof

(a) This follows directly from the Cauchy-Schwartz inequality.
(b) We show that for a given ðu; kÞ 2 HU, we can choose
ðv ;lÞ 2 HU such that
BUðu; k; v;lÞP Ckðu; kÞk2
HU

and

kðv ;lÞkHU
6 Ckðu; kÞkHU

:

We choose v ¼ uþ k and l ¼ �kþUðuÞ. Then

BUðu; k; v;lÞ ¼ Bðu;vÞ þ kUðvÞ þ lUðuÞ
¼ Bðu;uþ kÞ þ kUðuþ kÞ þ ½�kþUðuÞ�UðuÞ

¼ juj21;X þUðuÞ2 þ k2Uð1ÞP Ckðu; kÞk2
HU
;

n meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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kðv ;lÞk2
HU
¼ jv j21;X þUðvÞ2 þ l2

¼ juþ kj21;X þ ½Uðuþ kÞ�2 þ ½�kþUðuÞ�2

¼ juj21;X þ 2UðuÞ2 þ k2Uð1Þ2 þ 2Uð1ÞkUðuÞ

� 2kUðuÞ þ k2

6 C½juj21;X þUðuÞ2 þ k2� ¼ Ckðu; kÞk2
HU
:

Estimate (2.7) follows from these two inequalities.

(c) For a given ðv ;lÞ 2 HU, we choose u ¼ v þ l and k ¼ �lþ

UðvÞ. Using a similar calculation as used in the first part of
the proof of (b), we get the desired result. h

It now follows from Theorem 5.2.1 in [1] that the problem (2.5)
has a unique solution.

Remark 2.2. We note that the problem (2.5) has a unique solution
ðu; kÞ for any f 2 L2ðXÞ and g 2 L2ðCÞ. Let the linear functional UðvÞ
be given by UðvÞ �

R
X uv dx, where uðxÞ is smooth. Then, if u is

smooth, it can be shown that u is the unique (strong) solution of
the Neumann problem

� Du ¼ f � Lð1ÞR
X udx

u in X;

@u
@n
¼ g; on C

ð2:8Þ

with UðuÞ ¼ 0 (see [6]). It can also be shown that k ¼ Lð1Þ=Uð1Þ. If f
and g satisfy the compatibility condition (2.2), i.e., Lð1Þ ¼ 0, then it
is clear from (2.8) that u is the solution of the original Neumann
problem (2.1) with UðuÞ ¼ 0.

Remark 2.3. Consider the variational problem (2.5), where we
assumed that Lð1Þ ¼ 0. Substituting v ¼ 1 in (2.5), it is easy to
see that k ¼ 0 and we can also show that the problem (2.5) is
equivalent to the problem

Find u 2 H1ðXÞ such that

Bðu;vÞ ¼ LðvÞ and UðuÞ ¼ 0; 8v 2 H1ðXÞ:
ð2:9Þ

Remark 2.4. The variational formulation (2.5) of the Neumann
problem (2.1) and (2.2) is different than the standard variational
formulation used in the literature [7]. We note that small perturba-
tions in the input data (e.g., caused by the round-off error) or the
quadrature error will disturb the compatibility condition (2.2). It
is well known that the compatibility condition is necessary for
the existence of the solution of the Neumann problem, and thus
the standard variational formulation of the Neumann problem is
not well-posed without a constraint on the perturbation. In con-
trast, the formulation (2.5) is well-posed without any constraint
on the perturbation of data. We further note that there is obvious
freedom in the selection of U.

Discretization:
In order to discretize the variational problem (2.5) by a mesh-

less method, we consider Vh � H1ðXÞ, a one-parameter family of fi-
nite dimensional spaces, given by

Vh ¼ span /h
j : j 2 Nh

n o
; Nh is an index set:

The shape functions f/h
j ðxÞgj2Nh

are linearly independent. Moreover,
/h

j ’s have compact support and (in a meshless method) their con-
struction either does not depend, or depends only minimally, on a mesh.
We let xh

j � X be the interior of the supp /h
j . We assume that xh

j is
star-shaped with respect to a ball oh

j � xh
j and there exists a con-

stant C > 0 such that
cite this article in press as: I. Babuška et al., Effect of numerical integr
.1016/j.cma.2009.04.008
diamðxh
j Þ

diamðoh
j Þ

P C; 8j 2 Nh:

For the definition of star-shaped domains with respect to a ball, we
refer to [7].

Often, a shape function /h
i ðxÞ is associated with a particle xh

i 2 Rd

and it is assumed that the particles are distinct i.e., xh
i –xh

j if i–j. We
note that when xh

i \ C ¼ ;, then the associated particle
xh

i 2 xh
i � X. But when xh

i \ C–;, then the associated particle xh
i

could be outside X. We also divide the set Nh into two sets,
namely,

N00h ¼ fi 2 Nh : xh
i � Xg; ð2:10Þ

N0h ¼ fi 2 Nh : xh
i \ C – ;g: ð2:11Þ

We note that Nh ¼ N00h [ N0h and N00h \ N0h ¼ ;. We set jNhj ¼ cardNh.
We now make the following assumptions on the subspace Vh.

A1: (finite overlap) For i 2 Nh, let Si be the set of indices j such
that xh

i \xh
j – ;. There is a constant j, independent of i

and h, such that
ation o
cardSi 6 j: ð2:12Þ
A2: There are positive constants C;C1; and C2, independent of i
and h, such that
kDa/h
i kL1ðXÞ 6 Ch�jaj; 0 6 jaj 6 q for some q P 1;

ða is a multi-indexÞ; ð2:13Þ
C1hd
6 jxh

i j 6 C2hd and C1hd�1
6 jxh

i \ Cj 6 C2hd�1
;

ð2:14Þ

where jxh
i j is the ‘‘area” of xh

i in Rd and jxh
i \ Cj is the

‘‘length” of xh
i \ C in Rd�1.
A3: There are positive constants C1 and C2, independent of h and
i, such that
C1 6
diamðxh

i Þ
h

6 C2: ð2:15Þ
A4: There are positive constants C1 and C2, independent of h and
i, such that X

C1kvk2

L2ðXÞ 6 hd

i2Nh

v2
i 6 C2kvk2

L2ðXÞ; ð2:16Þ
X

C1kvk2

L2ðCÞ 6 hd�1

i2N0h

v2
i 6 C2kvk2

L2ðCÞ; ð2:17Þ
X

C1jvj2H1ðxiÞ

6 hd�2

j2Si

ðv j � v iÞ2 6 C2jv j2H1ðxiÞ
; 8i 2 Nh;

ð2:18Þ

for all v ¼
P

i2Nh
v i /

h
i 2 Vh.
A5: The shape functions reproduce polynomials of degree k, i.e.,X

i2Nh

pðxh
i Þ/

h
i ðxÞ ¼ pðxÞ; 8p 2 PkðXÞ and x 2 X; ð2:19Þ

where Pk is the space of polynomials of degree k.
Remark 2.5. The assumption A3 implies the first statement of
(2.14). However, we stated them separately since we have used
these statements in this paper. We next note that the inequality
(2.16) in A4 implies a strengthened uniform version of linear
independence of the shape functions f/h

i g. Also note that (2.16)
and (2.17) in assumption A4 imply that
n meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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jNhj � Ch�d
; jN00hj � Ch�d

; and jN0hj � Ch�ðd�1Þ ð2:20Þ

provided the function v ¼ 1 2 Vh. Here the notation Ah � Bh means
that there are constants C1; C2, independent of h such that
C1 6 jAhj=jBhj 6 C2. It is clear from assumption A5 (take pðxÞ ¼ 1 in
(2.19)) that 1 2 Vh and therefore f/h

i g form a partition of unity.
We mention that the particles fxh

i g are used in the construction of
shape functions satisfying (2.19) (see [18]). We further note that
it is possible to prove the inequalities (2.16)–(2.18) in certain situ-
ations for special distributions of the particles fxh

i g; also see Remark
4.3 in [4]. These proofs require the assumption (2.15).

Examples of subspaces Vh satisfying these assumptions can be
found in [2,17,20]. We mention that it is easy to construct smooth
shape functions f/h

i g, e.g., RKP shape functions with respect to a
smooth weight function (see [19,17,18]). We assume that
/h

i 2 Ckþ1ðXÞ for all i 2 Nh.
In the rest of the paper, we will write xh

j ;xh
j ;/

h
j as xj;xj;/j,

respectively, for notational simplicity, with the understanding that
they depend on h.

We will use a Lagrange multiplier method to determine a un-
ique approximate solution for problem (2.5). To this end, we define
a linear functional W on Vh by

WðvhÞ ¼
Uð1Þ
jNhj

X
i2Nh

v i; 8vh ¼
X
i2Nh

v i/i 2 Vh:

W is different from U, but note that Wð1Þ ¼ Uð1Þ. Also W is a
bounded linear functional since

jWðvhÞj6
Uð1Þ
jNhj

X
i2Nh

1

 !1
2 X

i2Nh

v2
i

 !1
2

6Chdh�
d
2h�

d
2kvhkL2ðXÞ ¼CkvhkL2ðXÞ;

ð2:21Þ

where the last inequality is obtained using (2.16) and (2.20). We
consider

Vh
W � ðvh;lÞ 2 Vh � R : kðvh;lÞk2

Vh
W
� jvhj2H1ðXÞ þ jWðvhÞj2 þ l2 <1

n o
:

Vh
W is a Hilbert space and we can show that there are constants

C1; C2, independent of h, such that

C1kðvh;lÞk2
Vh

W
6 kvhk2

H1
þ l2

6 C2kðvh;lÞk2
Vh

W
;8ðvh;lÞ 2 Vh

W:

ð2:22Þ

Therefore from (2.4) we see that the norms kð�; �ÞkVh
W

and kð�; �ÞkHU

are equivalent on Vh
W and the associated constants are independent

of h. We note that the linear functional W is not well defined on
H1ðXÞ, but is well defined on Vh.

Meshless method:
A meshless method to approximate the solution of (2.5) is a

Galerkin method

Find ðuh; khÞ 2 Vh
W satisfying

BWðuh; kh; v;lÞ ¼ LðvÞ; 8ðv ;lÞ 2 Vh
W;

ð2:23Þ

where

BWðuh; kh; v ;lÞ � Bðuh;vÞ þ khWðvÞ þ lWðuhÞ:

We will give a rationale for using W (in place of U) in (2.23) later in
Remark 3.1.

Let z 2 CðXÞ. We define Ihz 2 Vh, called the Vh-interpolant of z,
as

Ihz �
X
i2Nh

zðxiÞ/iðxÞ: ð2:24Þ

Strictly speaking, Ihz is a quasi-interpolant of z, since IhzðxjÞ–zðxjÞ.
We further note that the function z has to be suitably extended out-
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
doi:10.1016/j.cma.2009.04.008
side X in order to define Ihz, since some of the particles xi may be
outside X. The extension of z to define Ihz has been discussed in [3].

In the following result, we present the interpolation error
estimate.

Lemma 2.2. Let z 2Wkþ1;pðXÞ \ CðXÞ; p ¼ 2;1. Then there exists a
constant C, independent of z and h such that

kz�IhzkWs;pðXÞ 6 Chkþ1�sjzjWkþ1;pðXÞ: ð2:25Þ

The proof of this theorem can be found in [17,2].

Remark 2.6. It is important to note that the proof of Lemma 2.2
needs an additional assumption. We assume that for each i 2 Nh,
there is a ball Bi of diameter qh such that[
j2Si

xj � Bi;

where q P 1 is independent of i. We further note that the proof also
depends on the assumption A5, which in turn imposes certain
restrictions on the distribution of the particles fxig, which we do
not elaborate here.

To address the existence and uniqueness of the solution of the
problem (2.23), we state the following result:

Lemma 2.3

(a) There is a constant C > 0, independent of h, such that
ation o
jBWðw; m; v;lÞj 6 Ckðw; mÞkVh
W
kðv;lÞkVh

W
;

8 ðw; mÞ; ðv ;lÞ 2 Vh
W:
(b) There exists C > 0, independent of h, such that
C < inf
ðw;mÞ2Vh

W

sup
ðv ;lÞ2Vh

W

BWðw; m; v;lÞ
kðw; mÞkVh

W
kðv ;lÞkVh

W

:

(c) For any ðv ;lÞ 2 Vh
W satisfying kðv ;lÞkVh

W
–0,
0 < sup
ðw;mÞ2Vh

W

BWðw; m; v ;lÞ:
The proof of this result depends on the fact that Vh contains
constants (because of assumption A5) and follows the same argu-
ments used in the proof of Lemma 2.1.

Remark 2.7. Since Vh contains constants, by considering vh ¼ 1 in
the variational problem (2.23) it is clear that kh ¼ 0 and we can also
show that the problem (2.23) is equivalent to

Find uh 2 Vh such that
Bðuh;vhÞ ¼ LðvhÞ and WðuhÞ ¼ 0; 8vh 2 Vh:

ð2:26Þ

We note that the constraint WðuhÞ ¼ 0 gives a non-singular stiff-
ness matrix (which will otherwise be singular). This feature, possi-
bly with a different choice of W, is always incorporated in a
standard FEM code.

Now it is immediate from (2.9) and (2.26),
Bðu� uh;vhÞ ¼ 0; 8vh 2 Vh

and therefore,

ju� uhjH1ðXÞ 6 inf
vh2Vh

ju� vhjH1ðXÞ 6 ChkjujHkþ1ðXÞ: ð2:27Þ

Thus uh converges to u only in the ‘‘energy norm”, i.e., the H1-semi-
norm. Moreover, using (2.25), we also obtain

juh �IhujH1ðXÞ 6 juh � ujH1ðXÞ þ ju�IhujH1ðXÞ 6 ChkjujHkþ1ðXÞ;

ð2:28Þ

which will be used later in the paper.
n meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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3. Numerical integration in meshless method

To motivate the quadrature in the meshless method, we first
look at the problem (2.23) in detail. We write uh, the solution of
(2.23), as uh ¼

P
j2Nh

cj /j. Then the problem (2.23) can be written asX
j2Nh

cij þ khWð/iÞ þ
lUð1Þ
jNhj

X
j2Nh

cj ¼ li; for i 2 Nh;8l 2 R;

where

cij ¼ Bð/j;/iÞ ¼
Z

X
r/j � r/i dx

¼
Z

xj\xi

r/j � r/i dx ¼
Z

xi

r/j � r/i dx

and

li ¼ Lð/iÞ ¼
Z

X
f /i dxþ

Z
C

g/i ds ¼
Z

xi

f /i dxþ
Z

C\xi

g/i ds

� fi þ gi: ð3:1Þ

The integrals cij; fi, and gi are computed using quadrature. We define

c	ij ¼
Z
--

xi

r/j � r/i dx ð3:2Þ

and

l	i ¼
Z
--

xi

f /i dxþ
Z
--

C\xi

g/i ds � f 	i þ g	i ; ð3:3Þ

where
R
-- represents the numerically computed integral

R
. We note

that the matrix fc	ijg is not symmetric, since

c	ij ¼
Z
--

xi

r/j � r/i dx–
Z
--

xj

r/i � r/j dx ¼ c	ji:

We next note that for v ¼
P

j2Nh
v j/j and w ¼

P
i2Nh

wi/i in Vh, we
have

Bðv;wÞ ¼
X

i;j2Nh

cijv jwi

and LðvÞ ¼
X
i2Nh

fiv i þ
X
i2N0h

giv i:

So we naturally define

B	ðv ;wÞ ¼
X

i;j2Nh

c	ijv jwi

and L	ðvÞ ¼
X
i2Nh

f 	i v i þ
X
i2N0h

g	i v i:
ð3:4Þ

Under this definition, the form B	ð�; �Þ is bilinear on Vh � Vh and L	ð�Þ
is linear on Vh. Since fc	ijg is not symmetric, it is clear that B	ðv ;wÞ is
also not symmetric. Moreover, it can be easily shown thatX
j2Nh

c	ij ¼ 0; 8 i 2 Nh; ð3:5Þ

i.e., the ‘‘row-sum” of the matrix fc	ijg is 0, which implies that

B	ð1;wÞ ¼ 0; 8w 2 Vh: ð3:6Þ

But, in general, the ‘‘column-sum” of fc	ijg is not 0 and there is
v 2 Vh such that B	ðv;1Þ–0. We also observe that

L	ð1Þ ¼
X
i2Nh

f 	i þ
X
i2N0h

g	i – 0: ð3:7Þ

It is important to note that several other approaches for performing
numerical integration have been proposed in the literature to
approximate cij. We mention some of them below:
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
doi:10.1016/j.cma.2009.04.008
(i) The domain X is partitioned into small and appropriately
selected subdomains such that each xi and xi \xj are also
unions of these subdomains [16]. Numerical integration is
then performed on each of these subdomains. The choice
of subdomains in this approach allows the numerical inte-
gration of only smooth functions. The computed stiffness
matrix fc	ijg is also symmetric, but partitioning process could
be ‘expensive’ when xi’s are not simplices.

(ii) In a procedure proposed in [11,12,10], the domain X is par-
titioned into subdomains such that each xi and xi \xj are
also unions of these subdomains. Moreover, these subdo-
mains contain exactly one particle xj. The main feature of
this procedure is that the numerical integration is performed
only on the boundary of the subdomains. Also the matrix
fc	ijg is symmetric. The effectiveness of this approach for
the lowest order, i.e., when k ¼ 1 in (2.19), was shown in
[11,12]; the higher order methods, i.e., k P 2 in (2.19), were
addressed in [10].

(iii) The element cij of the stiffness matrix could be approxi-
mated by performing numerical integration on xi \xj. This
approach was used in [14,15], where the domains xi’s were
considered as spheres. Consequently, the domains xi \xj

were ‘‘lens-shaped” and special quadrature formulae were
developed to numerically integrate over such lens-shaped
domains. The matrix fc	ijg, obtained from this procedure, is
symmetric, but the main drawback of is that the matrix
fc	ijg does not satisfy the zero row sum condition (3.5).

(iv) Numerical integration on xi \xj, together with a simple
‘‘correction”, to approximate cij was suggested in [4]. This
correction ensured the zero row sum condition (3.5) for
the matrix fc	ijg; the matrix was also symmetric. The math-
ematical analysis presented in this paper required a certain
assumption on the discretization, which is not easy to check.
Also the analysis is valid for shape functions satisfying k ¼ 1
in (2.19); it could not be generalized for k P 2.We note that
rigorous mathematical error analysis is not available for the
procedures described in (i)–(iii). In this paper, we considered
numerical integration on xi (not on xi \xj) of the form
(3.2) and (3.3) to approximate cij and, unlike [4], our error
analysis is valid for all k P 1 in (2.19).

The meshless method with quadrature to approximate the solu-
tion u of the problem (2.5) is given by

Find ðu	h; k
	
hÞ 2 Vh

W satisfying

B	Wðu	h; k
	
h; v ;lÞ ¼ L	ðvÞ; 8ðv;lÞ 2 Vh

W;
ð3:8Þ

where

B	Wðw; m; v ;lÞ � B	ðw;vÞ þ mWðvÞ þ lWðwÞ ð3:9Þ

and B	ð�; �Þ and L	ð�Þ are as defined in (3.4). We refer to u	h as the
quadrature approximation to u. It is clear from (3.7) that the com-
patibility condition is not satisfied.

Remark 3.1. We note that the main reason for using Wð�Þ in (2.23)
and (3.8) instead of Uð�Þ, is that the numerical approximation of the
linear functional Uð�Þ is not required in (3.8).

We assume that the numerical quadrature satisfies the condi-
tions described below:

QA1. There exist positive constants g and s, small enough and
independent of i and h, such thatZ Z� �
ation o
xi

.dx� --
xi

.dx
��� ��� 6 g jxij k.kL1ðxiÞ ð3:10Þ

and
n meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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@xi\C
#ds� --

@xi\C
#ds

��� ��� 6 s j@xi \ Cj k#kL1ð@xi\CÞ ð3:11Þ

for a class of functions . 2Wm1 ;1ðxiÞ and # 2Wm2 ;1ð@xi \ CÞ
satisfying
kDa.kL1ðxiÞ 6 C½diamðxiÞ��jajk.kL1ðxiÞ; jaj 6 m1 ð3:12Þ
and
kDa#kL1ð@xi\CÞ 6 C½diamðxiÞ��jajk#kL1ð@xi\CÞ; jaj 6 m2;

ð3:13Þ
where C > 0 is independent of i and m1;m2 P 1 may depend
on the numerical quadrature as well as on q in assumption
A2.
QA2.
(a) There is a constant C > 0, independent of h, such that
cite
.1016
jB	Wðw; m; v ;lÞj 6 Ckðw; mÞkVh
W
kðv ;lÞkVh

W
;

8 ðw; mÞ; ðv ;lÞ 2 Vh
W: ð3:14Þ
(b) There exists C > 0, independent of h, such that
	

C < inf
ðw;mÞ2Vh

W

sup
ðv;lÞ2Vh

W

BWðw; m; v ;lÞ
kðw; mÞkVh

W
kðv;lÞkVh

W

: ð3:15Þ
(c) For any ðv ;lÞ 2 Vh
W satisfying kðv;lÞkVh

W
– 0,

	
0 < sup
ðw;mÞ2Vh

W

BWðw; m; v;lÞ: ð3:16Þ
QA3. For each i 2 Nh, let G	i : C2ðxiÞ ! R be a linear functional
given byZ Z Z

G	i ðvÞ ¼ --

xi

rv � r/i dxþ --
xi

Dv /i dx� --
@xi\C
rv �~n/i ds;

ð3:17Þ
where ~n is the unit outward normal to @xi \ C. We
assume that

G	i ðpÞ ¼ 0; 8p 2 Pk and 8i 2 Nh; ð3:18Þ

where Pk is the space of polynomials of degree k.
We first note that the assumption QA2, i.e., (3.14), (3.15), and

(3.16) ensures that the problem (3.8) has a unique solution. In
the following lemma, we show that (3.14)–(3.16) hold under a
somewhat restricted condition on the parameter g.

Lemma 3.1. Suppose there is a positive constant C such that the
quadrature satisfies (3.10) with g 6 Ch. Then B	Wðw; m; v;lÞ is
bounded, and for C small enough, B	Wðw; m; v;lÞ satisfies the inf–sup
conditions, i.e., (3.15) and (3.16) are satisfied.
Proof. Let

w ¼
X
i2Nh

wi/i; v ¼
X
i2Nh

v i/i 2 Vh:

We first estimate jBðw;vÞ � B	ðw; vÞj.
Recalling the definition of g in (3.10) and using (3.6) and (2.18),

we have for i 2 Nh,

Bðw;/iÞ � B	ðw;/iÞj j

¼
Z

xi

rw � r/i dx�
Z
--

xi

rw � r/i dx
����

����
¼
Z

xi

rðw�wiÞ � r/i dx�
Z
--

xi

rðw�wiÞ � r/i dx
����

����
6

X
j2Si

jwj �wij
Z

xi

r/j � r/i dx�
Z
--

xi

r/j � r/i dx
����

����
6 g jxij kr/j � r/ikL1ðxiÞ

X
j2Si

jwj �wij2
 !1

2 ffiffiffiffi
j
p

6 C2ghd h�2 h�
d�2

2 jwjH1ðxiÞ
ffiffiffiffi
j
p
6 C gh

d
2�1 jwjH1ðxiÞ; ð3:19Þ
this article in press as: I. Babuška et al., Effect of numerical integr
/j.cma.2009.04.008
where we used (2.13) with jaj ¼ 1. Therefore, squaring both sides of
the above inequality and summing over i 2 Nh, we getX
i2Nh

Bðw;/iÞ � B	ðw;/iÞ½ �2 6 Cg2hd�2
X
i2Nh

jwj2H1ðxiÞ
6 Cg2hd�2jwj2H1ðXÞ:

Thus, recalling that v ¼
P

i2Nh
v i/i and using (2.16), we get

Bðw;vÞ � B	ðw;vÞj j ¼
X
i2Nh

v i½Bðw;/iÞ � B	ðw;/iÞ�
�����

�����
6

X
i2Nh

v2
i

 !1=2 X
i2Nh

Bðw;/iÞ � B	ðw;/iÞ½ �2
" #1=2

¼ C gh
d
2�1jwjH1ðXÞ

X
i2Nh

v2
i

 !1=2

6 Cgh�1jwjH1ðXÞkvkL2ðXÞ:

ð3:20Þ

We now prove the boundedness of B	W, i.e., (3.14). From the defini-
tion (3.9) of B	Wðw; m; v;lÞ, we get

B	Wðw; m; v ;lÞ ¼ BWðw; m; v ;lÞ � ½Bðw;vÞ � B	ðw; vÞ�: ð3:21Þ

Therefore, using (3.20) and part (a) of Lemma 2.3, we get

jB	Wðw; m; v ;lÞj 6 jBWðw; m; v ;lÞj þ jBðw;vÞ � B	ðw;vÞj

6 C1kðw; mÞkVh
W
kðv ;lÞkVh

W
þ C2gh�1jwjH1ðXÞkvkL2ðXÞ

6 Cð1þ gh�1Þkðw; mÞkVh
W
kðv;lÞkVh

W
:

Thus by taking g 6 Ch (C does not have to be small enough) in the
above inequality, we get (3.14).

We now prove the inf–sup condition (3.15). For a given
ðw; mÞ 2 Vh

W, we choose v ¼ wþ m 2 Vh and l ¼ �mþWðwÞ. It can
be shown following the proof of (2.7) that

BWðw; m; v ;lÞP C1kðw; mÞk2
Vh

W
and kðv;lÞkVh

W
6 Ckðw; mÞkVh

W
:

ð3:22Þ

Therefore, from (3.21),

B	Wðw; m; v ;lÞP C1kðw; mÞk2
Vh

W
� jBðw;vÞ � B	ðw;vÞj: ð3:23Þ

Since v ¼ wþ m; v could be written as

v ¼
X
i2Nh

v i/i; where v i ¼ wi þ m:

Therefore, from (2.16) and (2.20)

kvk2
L2ðXÞ 6 Chd

X
i2Nh

v2
i ¼ Chd

X
i2Nh

ðwi þ mÞ2 6 Chd
X
i2Nh

ðw2
i þ m2Þ

¼ Chd
X
i2Nh

w2
i þ Chd

X
i2Nh

m2
6 C½kwk2

L2ðXÞ þ m2�: ð3:24Þ

Using the above in (3.20), we get

jBðw;vÞ � B	ðw;vÞj 6 Cgh�1jwjH1ðXÞ½kwkL2ðXÞ þ jmj�

6 Cgh�1½jwj2H1ðXÞ þ kwk
2
L2ðXÞ þ jmj

2�

6 C2gh�1½jwj2H1ðXÞ þ jWðwÞj
2 þ jmj2�

¼ C2gh�1kðw; mÞk2
Vh

W
: ð3:25Þ

Therefore, from (3.23), we have

B	Wðw; m; v ;lÞP ½C1 � C2gh�1�kðw; mÞk2
Vh

W
:

Finally, considering gh�1 small enough such that ½C1 � C2gh�1�P
C > 0, we get
ation on meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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B	Wðw; m; v;lÞP Ckðw; mÞk2
Vh

W
:

We have already seen from (3.22) that

kðv ;lÞkVh
W
6 Ckðw; mÞkVh

W
:

Thus we proved the inf–sup condition (3.15). The proof of (3.16) is
similar to Lemma 2.1(c) and we do not provide it here. h

Remark 3.2. We note that Lemma 3.1 was proved under a restric-
tive condition on g, namely, we required that g 6 Ch, with C suffi-
ciently small. Computations suggest that the condition g ¼ OðhÞ is
not necessary for the existence of a unique solution of the problem
(3.8) (g sufficiently small, independent of h, is sufficient). We will
further comment on the dependence of g on h later in this paper.

Remark 3.3. We will indicate in this remark that it is possible to
choose a quadrature rule that yields a small g in (3.10) in the
assumption QA1. We consider the set

x̂i ¼ fn 2 Rd : n ¼ x=diamðxiÞ; where x 2 xig:

Clearly, diamðx̂iÞ ¼ 1. For . 2Wm1 ;1ðxiÞ satisfying (3.12), we define
.̂ðnÞ � .ðxÞ ¼ .ðndiamðxiÞÞ. Then it is easy to show that

k.̂kL1ðx̂iÞ ¼ k.kL1ðxiÞ and kDa.̂kL1ðx̂iÞ 6 Ck.̂kL1ðx̂iÞ; jaj 6 m1:

ð3:26Þ

We now consider a ni-point quadrature rule on x̂i such thatZ
x̂i

.̂ðnÞdn�
Z
--

x̂i

.̂ðnÞdn

����
���� 6 ĝkDa.̂kL1ðx̂iÞ; jaj ¼ m1; ð3:27Þ

where m1 depends on the quadrature rule and ĝ is inversely propor-
tional to ni. For example, we may consider ni-panel composite trap-
ezoidal rule on x̂i. It is well known that for ni-panel composite
trapezoidal rule, (3.27) is true with m1 ¼ 2 and ĝ ¼ n�2

i =12. We
may also consider an ni-point Gaussian quadrature rule, in which
case we have ĝ ¼ Oðn�m1

i Þ. Now from (3.26) and (3.27), we haveZ
x̂i

.̂ðnÞdn�
Z
--

x̂i

.̂ðnÞdn

����
���� 6 gk.̂kL1ðx̂iÞ; jaj ¼ m1; ð3:28Þ

where g ¼ Cĝ is inversely proportional to ni. Thus we can choose a
quadrature rule (i.e., number of quadrature points ni) such that the
associated g is small. Finally, we get (3.10) by employing a standard
scaling argument to the inequality (3.28). Using similar arguments,
we can show that we can choose a quadrature rule with a small s in
(3.13). We further note that the functions . and # (in (3.10) and
(3.11) respectively) that we numerically integrate in this paper sat-
isfy the conditions (3.12) and (3.13).

Remark 3.4. For each i 2 Nh, we define the linear functional
Gi : H2ðxiÞ ! R as follows:

GiðvÞ ¼
Z

xi

rv � r/i dxþ
Z

xi

Dv /i dx�
Z
@xi\C

rv �~n/i ds: ð3:29Þ

It follows directly from Green’s formula that

GiðpÞ ¼ 0; 8 p 2 Pk: ð3:30Þ

In fact, (3.30) is true for any smooth function p. The linear functional
G	i , defined in (3.17), is obtained by using numerical integration on
each integral in Gi. In general, (3.30) is not true if Gi is replaced by
G	i . In (3.18) of assumption QA3, we require the exact same property
to hold for G	i .

Remark 3.5. It is instructive to illustrate the assumption QA3, i.e.,
(3.18) in simpler situations. Let X � R2 and k ¼ 1. Considering
pðx1; x2Þ ¼ x1 in (3.18), we get
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
doi:10.1016/j.cma.2009.04.008
G	i ðx1Þ ¼
Z
--

xi

@/i

@x1
dx�

Z
--
@xi\C

n1/i ds ¼ 0; i 2 Nh; ð3:31Þ

where~n ¼ ðn1;n2Þ. Similarly, considering pðx1; x2Þ ¼ x2 in (3.18), we
get

G	i ðx2Þ ¼
Z
--

xi

@/i

@x2
dx�

Z
--
@xi\C

n2/i ds ¼ 0; i 2 Nh: ð3:32Þ

Thus for k ¼ 1, the quadrature must satisfy the two conditions
(3.31) and (3.32) for each i 2 Nh. In particular, the quadrature must
satisfyZ
--

xi

r/i dx ¼ 0; 8i 2 N00h: ð3:33Þ

We illustrate now (3.18) for k ¼ 2. Considering pðx1; x2Þ ¼ x2
1 in

(3.18), we get

G	i ðx2
1Þ ¼ 2

Z
--

xi

x1
@/i

@x1
dxþ

Z
--

xi

/i dx�
Z
--
@xi\C

x1 n1 /i ds

" #
¼ 0; i 2 Nh:

ð3:34Þ

Similarly, considering pðx1; x2Þ ¼ x1x2 and pðx1; x2Þ ¼ x2
2 in (3.18), we

get

G	i ðx1x2Þ ¼
Z
--

xi

x2
@/i

@x1
þ x1

@/i

@x2

� �
dx�

Z
--
@xi\C

ðx2 n1 þ x1 n2Þ/i ds ¼ 0;

ð3:35Þ

and

G	i ðx2
2Þ ¼ 2

Z
--

xi

x2
@/i

@x2
dxþ

Z
--

xi

/i dx�
Z
--
@xi\C

x2 n2 /i ds

" #
¼ 0;

ð3:36Þ

for i 2 Nh. Thus for k ¼ 2, the quadrature must satisfy (3.34)–
(3.36) in addition to the assumptions (3.31) and (3.32). We will
present quadrature schemes satisfying assumption QA3 later in
this paper.
4. Effect of numerical integration

In this section, we will study the effect of quadrature on the
meshless method. In particular, we will compare u� u	h with
u� uh, where u, uh, and u	h are defined in problems (2.5), (2.23)
and (3.8) respectively. We will assume u to be smooth; in particu-
lar, u 2 Ckþ1ðXÞ. This assumption will allow us to present the main
ideas simply and effectively. We will first prove the so called
Strang lemma.

Lemma 4.1. Suppose ðuh; khÞand ðu	h; k
	
hÞare the solutions of problems

(2.23) and (3.8) respectively. Let ðw; ~kÞ 2 Vh
W be arbitrary. Then there

exists C, independent of h, such that

kðuh � u	h; kh � k	hÞkVh
W

6 C

"
kðuh �w; kh � ~kÞkVh

W
þ sup
ðv;lÞ2Vh

W

½Bðw;vÞ � B	ðw;vÞ� þ ½L	ðvÞ � LðvÞ�j j
kðv ;lÞkVh

W

#
:

ð4:1Þ

Proof. We first note that ðu	h �w; k	h � ~kÞ 2 Vh
W. Therefore, from the

inf–sup condition (3.15) we get

kðu	h �w; k	h � ~kÞkVh
W
6 C sup

ðv ;lÞ2Vh
W

B	Wðu	h �w; k	h � ~k; v;lÞ
kðv ;lÞkVh

W

: ð4:2Þ

Now,
ation on meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),



8 I. Babuška et al. / Comput. Methods Appl. Mech. Engrg. xxx (2009) xxx–xxx

ARTICLE IN PRESS
B	Wðu	h �w; k	h � ~k; v;lÞ
¼ BWðuh �w; kh � ~k; v ;lÞ þBWðw; ~k; v;lÞ �B	Wðw; ~k; v ;lÞ
þB	Wðu	h; k

	
h; v ;lÞ �BWðuh; kh; v ;lÞ

¼ BWðuh �w; kh � ~k; v ;lÞ þ Bðw;vÞ � B	ðw; vÞ þ L	ðvÞ � LðvÞ:

Therefore, from (4.2) and (3.14), we get

kðu	h �w; k	h � ~kÞkVh
W
6 C sup

ðv;lÞ2Vh
W

1
kðv;lÞkVh

W

jBWðuh �w; kh � ~k; v;lÞ

þ Bðw;vÞ � B	ðw;vÞ þ L	ðvÞ � LðvÞj
6 Ckðuh �w; kh � ~kÞkVh

W

þ C sup
ðv ;lÞ2Vh

W

jBðw;vÞ � B	ðw;vÞ þ L	ðvÞ � LðvÞj
kðv;lÞkVh

W

:

Finally, using the triangle inequality and the above, we get

kðuh � u	h; kh � k	hÞkVh
W

6 kðuh �w; kh � ~kÞkVh
W
þ kðu	h �w; k	h � ~kÞkVh

W

6 C kðuh �w; kh � ~kÞkVh
W

h

þ sup
ðv;lÞ2Vh

W

j½Bðw;vÞ � B	ðw; vÞ� þ ½L	ðvÞ � LðvÞ�j
kðv;lÞkVh

W

3
5;

which is the desired result. h

In the analysis presented of this section, we will apply (4.1)
with w ¼ Ihu and estimate each term on the right-hand side of
(4.1). Recall that Ihu is the Vh-interpolant of u, as defined in
(2.24). From the interpolation error estimate (2.25), we have

kIhukWkþ1;1ðXÞ 6 kukWkþ1;1ðXÞ þ ku�IhukWkþ1;1ðXÞ

6 CkukWkþ1;1ðXÞ: ð4:3Þ

For a smooth function v and i 2 Nh, let

Tk
i v �

X
jaj6k

Davð�xiÞ
a!

ðx� �xiÞa ð4:4Þ

be the kth degree Taylor polynomial of v centered at �xi, where �xi is
the center of the ball oi � xi (recall that xi is star-shaped with re-
spect to oi). It is well known that [7]

jv � Tk
i vjWj;1ðxiÞ

6
Chkþ1�j

ðkþ 1� jÞ! kvkWkþ1;1ðxiÞ
; j ¼ 0;1; . . . ; kþ 1:

ð4:5Þ

Now consider Tk
i Ihu – the kth degree Taylor polynomial of Ihu cen-

tered at �xi. We set

Ri � Ihu� Tk
i Ihu; i 2 Nh: ð4:6Þ

Then from (4.3) and (4.5) with v ¼ Ihu, we get

jRijWj;1ðxiÞ
6 Chkþ1�jkIhukWkþ1;1ðxiÞ

6 Chkþ1�jkukWkþ1;1ðXÞ: ð4:7Þ

We will use this estimate later for j ¼ 1;2 in the next lemma.

Lemma 4.2. For i 2 Nh, let Gi and G	i be the linear functionals as
defined (3.29) and (3.17) respectively. Then there exists a positive
constant C, independent of i and h, such that

jGiðIhuÞ � G	i ðIhuÞj 6
Cðgþ sÞhkþd�1kukWkþ1;1ðXÞ i 2 N0h;

Cghkþd�1kukWkþ1;1ðXÞ i 2 N00h:

8<
:

Proof. For each i 2 Nh, we write Ihu as

Ihu ¼ Tk
i Ihuþ Ri;
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
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where Ri is the remainder defined in (4.6). Since Tk
i Ihu is a polyno-

mial of degree k, we have GiðTk
i IhuÞ ¼ G	i ðT

k
i IhuÞ ¼ 0 from (3.30)

and (3.18) and therefore,

GiðIhuÞ � G	i ðIhuÞ ¼ GiðTk
i Ihuþ RiÞ � G	i ðT

k
i Ihuþ RiÞ

¼ GiðRiÞ � G	i ðRiÞ: ð4:8Þ

Let i 2 N0h. Then, using (3.10) and (3.11), and the assumption A2,

jGiðRiÞ � G	i ðRiÞj 6
Z

xi

rRi � r/i dx�
Z
--

xi

rRi � r/i dx
����

����
þ
Z

xi

DRi /i dx�
Z
--

xi

DRi /i dx
����

����
þ
Z
@xi\C

rRi �~n/i ds�
Z
--
@xi\C
rRi �~n/i ds

����
����

6 gjxij krRi � r/ikL1ðxiÞ þ gjxij kDRi /ikL1ðxiÞ

þ sj@xi \ Cj krRi �~n/ikL1ð@xi\CÞ

6 Cghd�1jRijW1;1ðxiÞ þ CghdjRijW2;1ðxiÞ

þ Cshd�1jRijW1;1ðxiÞ 6 Cðgþ sÞhkþd�1kukWkþ1;1ðXÞ;

ð4:9Þ

where we used (4.7) to obtain the last inequality.
For i 2 N00h, we have xi � X and therefore /ij@xi

¼ 0. Now
following the arguments leading to (4.9), we get

jGiðRiÞ � G	i ðRiÞj 6 Cghkþd�1kukWkþ1;1ðXÞ; i 2 N00h:

Thus from (4.8) and (4.9), we get the desired result. h

We now prove the main result of this paper.

Theorem 4.1. Suppose the approximating subspace Vh and the
numerical integration scheme satisfy conditions A1–A5 and QA1–
QA3, respectively. Then for small g, there is a positive constant C,
independent of u;g; s, and h, such that

ju� u	hjH1ðXÞ 6 C½hk þ ðgþ sÞhk þ ghk�1� kukWkþ1;1ðXÞ:

Proof. Let Ihu be the Vh-interpolant of u. We note that BðD;vÞ ¼ 0
and recall that B	ðD;vÞ ¼ 0 for an arbitrary constant D (see (3.6)).
We then substitute ðw; ~kÞ ¼ ðIhuþ D; khÞ in Lemma 4.1 to get

kðuh � u	h; kh � k	hÞkVh
W

6 C kuh �Ihu� DkH1ðXÞ

h

þ sup
ðv;lÞ2Vh

W

j½BðIhu; vÞ � B	ðIhu;vÞ� þ ½L	ðvÞ � LðvÞ�j
kðv ;lÞkVh

W

3
5: ð4:10Þ

We will now estimate the right-hand side of (4.10).
Since the solution u is smooth, we have for i 2 Nh,Z

xi

f /i dx ¼ �
Z

xi

Du/i dx

¼ �
Z

xi

DðIhuÞ/i dxþ
Z

xi

DðIhu� uÞ/i dx

andZ
@xi\C

g/i ds ¼
Z
@xi\C

ru �~n/i ds

¼
Z
@xi\C

rðIhuÞ �~n/i dsþ
Z
@xi\C

rðu�IhuÞ �~n/i ds:

Therefore, using the definition of the linear functional Gi (see (3.29))
we get,
ation on meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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BðIhu;/iÞ � Lð/iÞ ¼ BðIhu;/iÞ �
Z

xi

f /i dx�
Z
@xi\C

g /i ds

¼
Z

xi

rðIhuÞ � r/i dxþ
Z

xi

DðIhuÞ/i dx

�
Z
@xi\C

rðIhuÞ �~n/i dsþ
Z

xi

Dðu�IhuÞ/i dx

�
Z
@xi\C

rðu�IhuÞ �~n/i ds ¼ GiðIhuÞ

þ
Z

xi

DeI /i dx�
Z
@xi\C

reI �~n/i ds; ð4:11Þ

where eI � u�Ihu. Likewise, repeating the argument leading to
(4.11) with

R
replaced by

R
--, we get for i 2 Nh,

B	ðIhu;/iÞ � L	ð/iÞ ¼ G	i ðIhuÞ þ
Z
--

xi

DeI /i dx�
Z
--
@xi\C
reI �~n/i ds;

ð4:12Þ
where G	i is the linear functional defined in (3.17). Therefore com-
bining (4.11) and (4.12), we get for i 2 Nh,

BðIhu;/iÞ � B	ðIhu;/iÞ þ L	ð/iÞ � Lð/iÞ

¼ GiðIhuÞ � G	ðIhuÞ þ
Z

xi

DeI /i dx�
Z
--

xi

DeI /i dx

�
Z
@xi\C

reI �~n/i dsþ
Z
--
@xi\C
reI �~n/i ds: ð4:13Þ

Let i 2 N0h. Then using (3.10) and (3.11), Lemma 4.2, (2.25), and
assumption A2 in (4.13), we have

jBðIhu;/iÞ � B	ðIhu;/iÞ þ L	ð/iÞ � Lð/iÞj
6 jGiðIhuÞ � G	i ðIhuÞj þ gjxij kDeI /ikL1ðxiÞ

þ sj@xi \ Cj kreI �~n/ikL1ð@xiÞ

6 Cðgþ sÞhkþd�1kukWkþ1;1ðXÞ; 8 i 2 N0h: ð4:14Þ
Now let i 2 N00h, so /ij@xi

¼ 0 and using (3.10), Lemma 4.2, (2.25), and
assumption A2 in (4.13), we have

jBðIhu;/iÞ � B	ðIhu;/iÞ þ L	ð/iÞ � Lð/iÞj
6 jGiðIhuÞ � G	i ðIhuÞj þ gjxij kDeI /ikL1ðxiÞ

6 Cghkþd�1kukWkþ1;1ðXÞ; 8 i 2 N00h: ð4:15Þ
We now estimate the second term of the RHS of (4.10). Let
v ¼

P
i2Nh

v i /i be an arbitrary element in Vh. Then from (4.14),
(4.15), (2.16), (2.17) and (2.20), and a trace-inequality, we have

jBðIhu;vÞ�B	ðIhu;vÞþL	ðvÞ�LðvÞj

6

X
i2N00h

v i BðIhu;/iÞ�B	ðIhu;/iÞþL	ð/iÞ�Lð/iÞ½ �

������
������

þ
X
i2N0h

v i BðIhu;/iÞ�B	ðIhu;/iÞþL	ð/iÞ�Lð/iÞ½ �

������
������

6

X
i2N00h

v2
i

0
@

1
A

1=2 X
i2N00h

jBðIhu;/iÞ�B	ðIhu;/iÞþL	ð/iÞ�Lð/iÞj
2

0
@

1
A

1=2

þ
X
i2N0h

v2
i

0
@

1
A

1=2 X
i2N0h

jBðIhu;/iÞ�B	ðIhu;/iÞþL	ð/iÞ�Lð/iÞj
2

0
@

1
A

1=2

6Cghkþd�1jN00hj
1=2

X
i2N00h

v2
i

0
@

1
A

1=2

kukWkþ1;1ðXÞ

þCðgþsÞhkþd�1jN0hj
1=2

X
i2N0h

v2
i

0
@

1
A

1=2

kukWkþ1;1ðXÞ6Chk�1½gkvkL2ðXÞ

þhðgþsÞkvkL2ðCÞ�kukWkþ1;1ðXÞ

6Chk�1½gþhðgþsÞ�kukWkþ1;1ðXÞkvkH1ðXÞ: ð4:16Þ
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Then, from (4.10) and the Poincaré inequality, we get

juh�u	hjH1ðXÞ6 kðuh�u	h;kh�k	hÞkVh
W

6C inf
D2R
kuh�Ihu�DkH1ðXÞ

þChk�1½gþhðgþsÞ�kukWkþ1;1ðXÞsupðv;lÞ2Vh
W

kvkH1ðXÞ

kðv;lÞkVh
W

6Cjuh�IhujH1 þC½ðgþsÞhkþghk�1�kukWkþ1;1ðXÞ:

ð4:17Þ

Finally, from (2.27) and (2.28)

ju� u	hjH1ðXÞ 6 ju� uhjH1ðXÞ þ juh � u	hjH1ðXÞ

6 C½hk þ ðgþ sÞhk þ ghk�1�kukWkþ1;1ðXÞ;

which is the desired result. h

For k ¼ 1, we only require the quadrature to satisfy a reduced
form of QA3, namely, we assume that (3.18) of QA3 is satisfied only
for i 2 N00h.

Theorem 4.2. Suppose the approximating subspace Vh satisfies
conditions A1–A5 with k ¼ 1. We consider numerical integration
scheme satisfying QA1–QA3, but (3.18) of QA3 is satisfied only for
i 2 N00h. Then for small g, there is a constant C, independent of u;g; s,
and h, such that

ju� u	hjH1ðXÞ 6 C½hþ gþ s� kukW2;1ðXÞ:

The proof of this result can be obtained by slightly modifying
the proof of Theorem 4.1; we do not provide the details here.

Remark 4.1. It is clear from Theorem 4.1 that we do not have
optimal order of convergence, i.e., ju� u	hjH1ðXÞ ¼ Oðhk�1½hþ g�Þ. But
if we consider g 6 Ch, then we get

ju� u	hjH1ðXÞ ¼ OðhkÞ:

This means that if we increase the accuracy of the quadrature as h
becomes smaller, we restore the optimal order of convergence. This
effect of numerical integration in meshless method is very different
from the effect of numerical integration in FEM.
5. Numerical results

In this section, we present computational data illuminating the
results in Section 4 in one dimension. We will also develop numer-
ical integration rules satisfying (3.18) of assumption QA3.

We consider the one dimensional version of the problem (2.5)
with X ¼ ð0;1Þ. Let uðxÞ ¼ ex � ðe� 1Þ, satisfying UðuÞ ¼

R 1
0 udx

¼ 0, be the exact solution of (2.5) with LðvÞ ¼ �
R 1

0 exvðxÞdx
þevð1Þ � vð0Þ. To approximate this solution by the meshless
method (2.23), we first construct a C2ðRÞ, symmetric, RKP basic
shape function /ðxÞ with support ½�R;R�, satisfyingX
j2Z

/ðx� jÞ ¼ 1 and
X
j2Z

j/ðx� jÞ ¼ x; 8x 2 R;

with R ¼ 1:8 (see [2,18,19]). We then consider a natural number
N > 1, and for h ¼ 1=N, we let

�Nh ¼ xi ¼ ih : i ¼ �1;0;1; . . . ;N;N þ 1f g:

For each xi 2 �Nh, we define the shape function

/iðxÞ � /
x
h
� i

� �
; x 2 X � ð0;1Þ: ð5:1Þ

Then for i 2 Nh;xi � ðai; biÞ ¼ ðih� Rh; ihþ RhÞ \X and supp
/iðxÞ ¼ xi ¼ ½ai;bi� \X. We note that for i ¼ 2;3; . . . ;N � 2, we have
ation on meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),



Table 1
Standard p-point Gauss rule.

h ju� u	hjH1ðXÞ

p ¼ 8 p ¼ 16 p ¼ 32

1/10 1.3480E�02 3.4015E�03 3.3906E�03
1/20 1.2856E�02 1.7655E�03 1.7426E�03
1/40 1.2527E�02 9.3409E�04 8.8369E�04
1/80 1.2364E�02 5.4747E�04 4.4516E�04
1/160 1.2284E�02 3.9752E�04 2.2374E�04
1/320 1.2244E�02 3.5257E�04 1.1285E�04
1/640 1.2224E�02 3.4182E�04 5.7922E�05
1/1280 1.2214E�02 3.3982E�04 3.1563E�05

The H1-seminorm of the error, ju� u	h jH1ðXÞ , where uðxÞ ¼ ex � ðe� 1Þ and u	h is the
approximate solution obtained using standard Gaussian quadrature. The shape
functions reproduce polynomial of degree k ¼ 1.

10−4 10−3 10−2 10−1
10−5

10−4

10−3

10−2

10−1

h

|u
−u

h* | H
1 (Ω

)

Gauss rule (uncorrected): k=1

8−point

16−point

32−point

Fig. 1. The loglog plot of ju� u	hjH1 ðXÞ with respect to h:u	h is the approximate
solution obtained using p-point standard Gaussian quadrature (symmetric) with
p ¼ 8;16, and 32.
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ðih� Rh; ihþ RhÞ � X; ai ¼ ih� Rh;

bi ¼ ihþ Rh and /iðaiÞ ¼ /iðbiÞ ¼ 0: ð5:2Þ

Thus N00h ¼ f2;3; . . . ;N � 2g and N0h ¼ f�1;0;1;N � 1;N;N þ 1g.
It can be easily shown that the shape functions f/ig

Nþ1
i¼�1 repro-

duce polynomials of degree k ¼ 1, i.e.,

XNþ1

i¼�1

pðxiÞ/iðxÞ ¼ pðxÞ; 8p 2 P1ðXÞ:

We next show a procedure to obtain a quadrature scheme that sat-
isfies the condition (3.18) of the assumption QA3. Suppose f ðxÞ is
smooth in ½ai; bi� and let Iiðf Þ �

R bi
ai

f ðxÞdx. To approximate Iiðf Þ, we
seek a p-point quadrature rule of the form

Q i
gcðf Þ �

Xp

s¼1

�wsf ð�zsÞ ð�zs 2 ½ai;bi� and �ws depend on iÞ ð5:3Þ

with the property that

Q i
gcð/

0
iÞ ¼ 0; i 2 N00h: ð5:4Þ

This is precisely the condition (3.18) in 1 � d for k ¼ 1 (see (3.33) in
Remark 3.5). We start with a p-point quadrature rule for the inter-
val ½ai;bi� of the form

Q i
gðf Þ �

Xp

s¼1

wsf ðzsÞ: ð5:5Þ

We now define �zs � zs and

�ws � ws þ hi ws /
0
iðzsÞ ð5:6Þ

in (5.3), and choose hi such that (5.4) is satisfied. We first note that

Q i
gcð/

0
iÞ ¼

Xp

s¼1

�ws/
0
ið�zsÞ ¼

Xp

s¼1

ws þ hi ws /
0
iðzsÞ

� 	
/0iðzsÞ

¼
Xp

s¼1

ws/
0
iðzsÞ þ hi

Xp

s¼1

ws ½/0iðzsÞ�2:

Thus imposing condition (5.4), we get

Xp

s¼1

ws/
0
iðzsÞ þ hi

Xp

s¼1

ws ½/0iðzsÞ�2 ¼ 0 or; hi ¼
�
Pp

s¼1ws/
0
iðzsÞPp

s¼1ws ½/0iðzsÞ�2
:

ð5:7Þ

Thus Qi
gcðf Þ satisfies the condition (5.4) and we refer to Qi

gcðf Þ as the
p-point corrected quadrature.

We now consider the quadrature rule Qi
gðf Þ in (5.5) to be the

p-point Gauss quadrature rule. It is well known that the points
fzsgp

s¼1 are symmetrically placed in the interval ðai; biÞ about the
mid-point mi � ðai þ biÞ=2; the weights fwsgp

s¼1 are also ‘‘symmet-
ric”, i.e., ws ¼ wpþ1�s; s ¼ 1;2; . . . ; p. We next recall that the shape
functions /iðxÞ, defined in (5.1) are symmetric in the interval
ðai; biÞ about the mid-point mi. Consequently, /0iðxÞ is anti-symmet-
ric in the interval ðai; biÞ about mi. Therefore, it is clear that

Q i
gð/

0
iÞ ¼

Xp

s¼1

ws/
0
iðzsÞ ¼ 0; 8i 2 N00h:

Thus the Gaussian quadrature Qi
gðf Þ satisfies (5.4); in fact, hi ¼ 0 in

this situation and Qi
gðf Þ ¼ Qi

gcðf Þ.
We now present numerical experiments to illuminate the re-

sults in Theorem 4.1 for k ¼ 1; in particular we illuminate the re-
sult in Theorem 4.2. We considered u ¼ ex � ðe� 1Þ to be exact
solution of (2.5) with UðvÞ �

R 1
0 v dx. The function u was approxi-

mated by u	h 2 Vh ¼ spanf/iðxÞg
Nþ1
i¼�1 – the solution of the meshless

method with numerical integration (3.8), where /i is defined in
(5.1). We recall that the linear functional Wð�Þ was used in the
meshless method (3.8) to compute u	h. We employed the p-point
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
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Gauss quadrature rule Qi
gðf Þ to numerically integrate the relevant

terms, e.g., c	ij and l	i (see (3.2) and (3.3)). We note that we did
not approximate the boundary term in (3.3) in our 1 � d example
and so have s ¼ 0.

We used p ¼ 8;16; and 32 in Q i
gðf Þ and computed the seminorm

ju� u	hjH1ðXÞ. We note that g decreases as p increases. We presented
these results in Table 1. We also present the log–log graph of
ju� u	hjH1ðXÞ with respect to h in Fig. 1.

We observe from Table 1 that the error ju� u	hjH1ðXÞ decreases as
h decreases. Moreover, for p ¼ 16, we observe from Fig. 1 that
ju� u	hjH1ðXÞ ¼ OðhÞ at the beginning, but ‘‘levels off” for smaller val-
ues of h. For p ¼ 32 the pattern is same, but the error is OðhÞ for few
more smaller values of h. This pattern suggests that
ju� u	hjH1ðXÞ ¼ Oðhþ gÞ.

We will now show that the error ju� u	hjH1ðXÞ is not Oðhþ gÞ
when the underlying quadrature rule does not satisfy the assump-
tion (5.4); we will show that the error increases as h becomes
smaller. We construct a quadrature rule on ðai; biÞ such that the
quadrature points are not situated symmetrically about the mid-
point mi.

Consider the mapping h : ½�1;1� ! ½�1;1� given by

y ¼ hðzÞ ¼ zþ 0:1ðz2 � 1Þ:

Clearly,

h0ðzÞ ¼ 1þ 0:2z > 0 8z 2 ½�1;1�:
ation on meshless methods, Comput. Methods Appl. Mech. Engrg. (2009),
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Fig. 2. The loglog plot of ju� u	hjH1ðXÞ with respect to h:u	h is the approximate
solution obtained using non-symmetric Gaussian quadrature (uncorrected) with 8, 16,
32, and 64.

I. Babuška et al. / Comput. Methods Appl. Mech. Engrg. xxx (2009) xxx–xxx 11

ARTICLE IN PRESS
Consider

IðgÞ �
Z 1

�1
gðyÞdy ¼

Z 1

�1
gðhðzÞÞh0ðzÞdz

The integral on the right could be approximated by the standard
p-point Gauss quadrature, given by

IðgÞ �
Xp

s¼1

vsgðhðfsÞÞh
0ðfsÞ;

where ffsg and fv sg are standard Gauss points and Gauss weights
respectively for the interval ð�1;1Þ. This induces an associated
p-point non-symmetric Gauss quadrature QnsðgÞ on (�1,1) to
approximate IðgÞ given by

Q nsðgÞ �
Xp

s¼1

vns
s gðfns

s Þ;

where

vns
s � v s h0ðfsÞ; fns

s � hðfsÞ:

Clearly vns
s and fns

s are not symmetric. It is well known that the ‘‘pre-
cision” of standard p-point Gauss quadrature is ð2p� 1Þ. It can be
easily shown that the ‘‘precision” of the associated p-point non-
symmetric Gauss quadrature is ðp� 1Þ.

The p-point quadrature Q nsð�Þ induces the associated p-point
non-symmetric Gauss quadrature Qi

nsð�Þ for the interval ðai; biÞ
given by

Q i
nsðf Þ �

Xp

s¼1

wns
s f ðzns

s Þ;

where

zns
s ¼

bi � ai

2
fns

s þ
bi þ ai

2
and wns

s ¼
bi � ai

2
vns

s : ð5:8Þ

We note that

Q i
nsð/

0
iÞ–0; for i 2 N00h:

Thus Qi
nsðf Þ does not satisfy the assumption (5.4).

We computed u	h – the solution of the meshless method (3.8)
with numerical integration, where we used p-point Qi

nsðf Þ to com-
pute the relevant integrals. We computed the error ju� u	hjH1ðXÞ for
p ¼ 8;16;32; and 64, and presented the data in Table 2. We also
present the log-log graph of ju� u	hjH1ðXÞ with respect to h in Fig. 2.

We observe from Table 2 and Fig. 2 that for p ¼ 8, the error in-
creases as h decreases and it ‘‘levels off” for smaller values of h. For
p ¼ 16;32, and 64, the error first decreases and then increases. The
data suggest that ju� u	hjH1ðXÞ is not Oðhþ gÞ.

We now consider a quadrature rule Qi
nscðf Þ for the interval

ðai; biÞ given by
Table 2
Non-Symmetric p-point Gauss rule.

h ju� u	h jH1ðXÞ

p ¼ 8 p ¼ 16 p ¼ 32 p ¼ 64

1/10 1.1470E�01 4.0789E�03 3.3921E�03 3.3903E�03
1/20 1.4432E�01 3.4066E�03 1.7500E�03 1.7424E�03
1/40 2.0611E�01 4.6066E�03 9.2577E�04 8.8352E�04
1/80 3.4362E�01 8.4159E�03 6.9956E�04 4.4500E�04
1/160 5.3300E�01 1.6622E�02 1.1156E�03 2.2388E�04
1/320 6.8533E�01 3.3220E�02 2.2158E�03 1.1615E�04
1/640 7.7491E�01 6.6244E�02 4.4590E�03 8.2020E�05
1/1280 8.2283E�01 1.3075E�01 8.9503E�03 1.2066E�04

The H1-seminorm of the error, ju� u	hjH1ðXÞ , where u ¼ ex � ðe� 1Þ and u	h is the
approximate solution obtained using ‘‘non-symmetric Gaussian quadrature”; the
quadrature does not satisfy the assumption (5.4). The shape functions reproduce
polynomial of degree k ¼ 1.

Please cite this article in press as: I. Babuška et al., Effect of numerical integr
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Qi
nscðf Þ �

Xp

s¼1

�wns
s f ð�zns

s Þ

that satisfies (5.4), i.e.,

Qi
nscð/

0
iÞ ¼ 0; 8i 2 N00h: ð5:9Þ

Using the ideas presented at the beginning of this section, specifi-
cally, using (5.3)–(5.6) and (5.7), we define �zns

s � zns
s and

�wns
s ¼ wns

s þ hi wns
s /0iðzns

s Þ;

where zns
s and wns

s is defined in (5.8). We choose hi, as in (5.7), such
that Qi

nscð�Þ satisfies (5.9). We refer to Qi
nscðf Þ as the corrected non-

symmetric Gauss-rule.
We again compute u	h – the solution of the meshless method

(3.8) with numerical integration, where we used p-point Qi
nscðf Þ

to compute the relevant integrals. We present the error
ju� u	hjH1ðXÞ and the values of h in Table 3. We also present the
log–log graph of ju� u	hjH1ðXÞ with respect to h in Fig. 3.

We observe from Table 3 and Fig. 3 that the error ju� u	hjH1ðXÞ
behaves differently than the error given in Table 2 and Fig. 2. More-
over, Fig. 3 suggests that ju� u	hjH1ðXÞ ¼ Oðhþ gÞ, which illuminates
the main result of this paper for k ¼ 1. Thus the data in Tables 2
and 3 strongly suggest that the assumption QA3 on the numeri-
cally quadrature is necessary.
Table 3
Corrected non-symmetric Gauss rule.

h ju� u	hjH1ðXÞ

8 points 16 points 32 points 64 points

1/10 4.8825E�03 3.4363E�03 3.3907E�03 3.3903E�03
1/20 3.4354E�03 1.8473E�03 1.7430E�03 1.7424E�03
1/40 2.7885E�03 1.0985E�03 8.8441E�04 8.8350E�04
1/80 2.5133E�03 8.1143E�04 4.4643E�04 4.4490E�04
1/160 2.3944E�03 7.2840E�04 2.2604E�04 2.2327E�04
1/320 2.3407E�03 7.1009E�04 1.1710E�04 1.1193E�04
1/640 2.3154E�03 7.0752E�04 6.5600E�05 5.6097E�05
1/1280 2.3031E�03 7.0793E�04 4.3936E�05 2.8048E�05

The H1-seminorm of the error, ju� u	h jH1ðXÞ , where uðxÞ ¼ ex � ðe� 1Þ and u	h is the
approximate solution obtained using corrected non-symmetric Gaussian quadrature.
The shape functions reproduce polynomial of degree k ¼ 1.
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Fig. 3. The loglog plot of ju� u	hjH1ðXÞ with respect to h:u	h is the approximate
solution obtained using corrected non-symmetric Gaussian quadrature with 8, 16, 32,
and 64 points.
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6. Remarks and conclusions

In this paper, we have developed a mathematical framework to
analyze the effect of numerical integration on meshless methods
employing shape functions that reproduce polynomials of degree
k P 1. The main results are summarized as follows:


 One of our main assumptions on the numerical quadrature is
that it satisfy a form of Green’s theorem, given in (3.18) in
QA3. Using numerical integration rules that satisfy (3.18), we
have proved error estimates.


 Numerical integration rules, satisfying the assumptions men-
tioned in this paper, automatically yield the so called ‘‘zero
row sum condition” (see (3.5)). This was one of the main
assumptions that was used to obtain a similar error estimate
in [4] for the case k ¼ 1.


 Our results indicate that numerical integration with increased
accuracy is required as h! 0 to obtain the optimal order of con-
vergence. The numerical results presented in this paper strongly
support the results of this paper.
Please cite this article in press as: I. Babuška et al., Effect of numerical integr
doi:10.1016/j.cma.2009.04.008
We have considered a scalar second order Neumann boundary
value problem with constant coefficient in this paper. The results
in this paper can be extended to a general coercive Neumann prob-
lem with non-constant coefficients.
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