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1. Introduction

Meshless methods (MM) were developed in early 1990s for
numerically solving partial differential equations (PDE). This initia-
tive was stimulated by the difficulties in mesh generation when
available methods, e.g., the Finite Element Method (FEM), were
used to solve various complex problems in engineering.

It was recognized from the very beginning of the development
of MM that numerical integration posed bigger challenge in this
method than the FEM, and the issue was discussed in various
engineering papers, e.g., [5,8,9,11,12,10,14-16]. In FEM, the shape
functions are piecewise polynomials of degree k > 1 and a careful
mathematical analysis of the effect of numerical integration in FEM
was published 30 years ago in [13]. The analysis required that the
numerical integration in FEM, when applied to PDEs with constant
coefficients, must evaluate the stiffness matrix exactly. This is eas-
ily achieved since the integrands of the elements of the stiffness
matrix of FEM are polynomials of degree 2k — 2. The analysis also
exploited the fact that ¢th order derivatives of the shape functions
vanish locally (on each triangle) for ¢ > k + 1. In contrast, the
shape functions used in MM are not piecewise polynomials and
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their ¢th order derivatives grow with ¢. Moreover, the stiffness
matrix cannot be evaluated exactly for PDEs with constant coeffi-
cients. Thus the shape functions used in MM lack the two most
important features of the shape functions of FEM. Numerical inte-
gration in MM is a bigger challenge primarily because of the lack of
these features.

Many interesting ideas on the use of numerical integration in
MM were presented in the engineering papers mentioned above,
but to the best of our knowledge, a careful mathematical analysis
of the effect of numerical integration in MM was first reported in
[4]. It is shown in this paper that the error in the approximate solu-
tion, obtained from MM with standard numerical quadrature, does
not converge. It is then shown that if the stiffness matrix satisfies a
condition referred to as the zero row sum condition, the energy
norm of the error in the approximate solution is O(h + 77), where
h is the standard discretization parameter related to the diameters
of the supports of the shape functions and # is the parameter indi-
cating the accuracy of the underlying numerical quadrature. Thus
MM, with numerical integration, does not yield optimal order of
convergence unless # = O(h). However, the analysis in [4] uses
an assumption on the approximation space that is difficult to ver-
ify. We further note that the analysis is restricted to MMs with
shape functions that reproduced polynomials of degree k = 1; it
is not clear that the analysis can be extended to k > 1.

In this paper, we present a mathematical analysis of the effect of
numerical integration on MM, where the quadrature is required to
satisfy certain conditions that are different from those required in
[4]. We also indicate how to obtain numerical quadrature schemes
satisfying these conditions. Moreover, in contrast to [4], the
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analysis presented in this paper is valid for k > 1. We have shown
in this paper that the energy norm of the error in the approximate
solution obtained from MM with numerical quadrature (satisfying
certain conditions) is O(h* (h + 17)), where ] is a parameter related
to the accuracy of the numerical quadrature and h is the standard
discretization parameter. Thus MM does not yield optimal order of
convergence for 77#0(h). Certainly if # = O(h), we have the optimal
order of convergence. It is important to note that the parameter #
(see (3.10)) associated with the particular numerical integration
used in the FEM, namely the Gauss rule, is O(h). We mention that
the numerical integration used in this paper yields a non-symmetric
stiffness matrix. But this does not pose a serious problem since
non-symmetric linear systems could be solved efficiently by itera-
tive methods.

We address the application of MM on a second order Neumann
boundary value problem in this paper. The outline of this paper is
as follows: In Section 2, we present the preliminaries, a variational
formulation based on Lagrange multipliers and the associated MM.
In Section 3, we present a numerical quadrature scheme, together
with associated assumptions on the scheme. We present our main
results in Section 4, which are Theorems 4.1 and 4.2. In Section 5,
we present a procedure that indicates how to obtain quadrature
schemes satisfying an assumption given in Section 3. We also pres-
ent numerical experiments in this section to illuminate our main
results presented in Section 4. Some of these numerical experi-
ments also indicate the necessity of one of the main assumptions
on the quadrature given in Section 3. We provide a few remarks
and a brief summary of the paper in Section 6.

2. Preliminaries and meshless method

Let Q c R? be a bounded domain with Lipschitz continuous
boundary I = 9Q. We denote the usual Sobolev space by W™ (Q)
with the norm and semi-norm, |[u||ymsq, and [ulymeq, respec-
tively. We will consider only p = 2 and o in this paper; W™?(Q)
will be denoted by H"(Q). Moreover, [ufl, ), Ul @) 18l 0
and ||ull, ., will denote the usual norms on [»(9), L..(2),L.(I),
and L (I'), respectively.

Exact problem:

We consider the standard Neumann problem

—Au=f inQ,

du B (2.1)
%_g, on I'=0Q,

where -2 is the unit outward normal derivative to I" and f € L,(9),

on

g € Ly(I) satisfy the compatibility condition

/f(x)dx+/g(s) ds=0. (2.2)
Q r

The associated variational formulation of (2.1) is given by

Find u € H'(Q) satisfying,

. (2.3)
B(u,v) =L(v), YveH (Q),

where
B(u, y)E/VwVvdx and L(v)z/fvdx+/gvds.
Q Q r

The compatibility condition (2.2) can be written as L(1) = 0. It is
well known that the problem (2.3) has a unique solution up to a
constant. A standard way of specifying a unique solution is to
consider a linear functional @ : [,(Q) — R with @(1) > 0 and seek
the unique solution u satisfying @(u) = 0. The functional &(u), for
example, could be chosen to be &(u)= “@ Joudx or @(u)=
Jo pudx, where ¢(x) is smooth. Let

Ho = {(2,10) € H'(2) x R: (2, 1)}, = 1 ) + 1 O(0) + 2% < o0}

Hg is a Hilbert space and it is easy to show that there exist positive
constants Cq, Cy, such that

Cill (. Wi, < 12l + 1 < Coll (@, Wli,» ¥ (v, 1) € Ha
(2.4)
We consider an alternate variational problem given by
Find (Lﬂl, /) € Hy satisfying, 25)
Bo(u, 40, 4) = L(v), V(v 1) € Ho,
where
Bo(u,2; v, 1) = B(u, v) + 29(v) + ud(u),
and B(u, v) and L(v) are defined above.

Remark 2.1. We note that the problem (2.5) can equivalently be
written as the system
B(u,v) + 1®(v) = L(v),
uew) =0, vVueR.

Yo e H(Q),

The second equation gives the constraint @(u) = 0. Moreover, it is
well known that the first equation is the Euler-Lagrange equation
for the constrained extremal problem

min J(v),
veH'(Q)
&(v)=0

where J(v) =1B(v,v) — L(v).4 is the Lagrange multiplier and the
problem (2.5) is known as the variational problem based on La-
grange multiplier.

To establish that the problem (2.5) has a unique solution, we
present the following result.

Lemma 2.1

(a) There is a constant C > 0 such that
|Bo(u, 2; v, W] < ClIW DI, (2, W, YU, 2), (v, 1) € Ho.
(2.6)

(b) There exists C > 0 such that

9 .
C< lrlf sup -/345(”7 A0, :u) )
wdeHs (p ety 1WAy, 12, W,

(¢) For any (v, 1) € Hy satisfying ||(v, )|y, # O,

27)

0< sup |Zo(u,is v, o).

(u.2)eHgp

Proof

(a) This follows directly from the Cauchy-Schwartz inequality.
(b) We show that for a given (u,4) € Hs, we can choose
(v, 1) € Hp such that

B, 75 v.0) > C(w. 25,
and
(2, Wy, < CllW, Dy,
We choose v =u+ 1 and pt = —1 + @(u). Then
Bo(U, A; v, 1) = B(u, v) + 10(v) + ud(u)
=B(u,u+2)+ 29U+ )+ [-4+ O(u)|P(u)
= [ulio + @)’ + 2&(1) > C||(u, 2l
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and

I(@. I, = 21 o + 2(2)° + 422
= [u+ii g+ [P+ 2P + [-4+ )
= [uf2 o +20W)’ + (1) +20(1) 1 P(u)
—22.0u) + 22
< Clluf o + D) + 22 = (. ),
Estimate (2.7) follows from these two inequalities.
(c) For a given (v, 1) € Hy, we choose u= v+ p and 2= —pu+

@(v). Using a similar calculation as used in the first part of
the proof of (b), we get the desired result. O

It now follows from Theorem 5.2.1 in [1] that the problem (2.5)
has a unique solution.

Remark 2.2. We note that the problem (2.5) has a unique solution
(u, ) for any f € L,(Q) and g € Ly(I'). Let the linear functional ®(v)
be given by ®(v) = [, ¢ vdx, where ¢(x) is smooth. Then, if u is
smooth, it can be shown that u is the unique (strong) solution of
the Neumann problem

L(1)

—Au=f—— ¢ in Q,
@:g onl
on <’

with @(u) = 0 (see [6]). It can also be shown that 2 = L(1)/®(1). If f
and g satisfy the compatibility condition (2.2), i.e., L(1) = 0, then it
is clear from (2.8) that u is the solution of the original Neumann
problem (2.1) with @(u) = 0.

Remark 2.3. Consider the variational problem (2.5), where we
assumed that L(1) = 0. Substituting » =1 in (2.5), it is easy to
see that 1 =0 and we can also show that the problem (2.5) is
equivalent to the problem

Find u € H'(Q) such that

1 (2.9)
B(u,v) =L(v) and &(u)=0, VveH (Q).
Remark 2.4. The variational formulation (2.5) of the Neumann
problem (2.1) and (2.2) is different than the standard variational
formulation used in the literature [7]. We note that small perturba-
tions in the input data (e.g., caused by the round-off error) or the
quadrature error will disturb the compatibility condition (2.2). It
is well known that the compatibility condition is necessary for
the existence of the solution of the Neumann problem, and thus
the standard variational formulation of the Neumann problem is
not well-posed without a constraint on the perturbation. In con-
trast, the formulation (2.5) is well-posed without any constraint
on the perturbation of data. We further note that there is obvious
freedom in the selection of &.

Discretization:

In order to discretize the variational problem (2.5) by a mesh-
less method, we consider V, ¢ H'(Q), a one-parameter family of fi-
nite dimensional spaces, given by

V= span{d);' je Nh};Nh is an index set.

The shape functions {d);-" (%)} jen, are linearly independent. Moreover,
qﬁ}“s have compact support and (in a meshless method) their con-
struction either does not depend, or depends only minimally, on a mesh.
We let o' C Q be the interior of the supp (/)}’-’. We assume that o is
star-shaped with respect to a ball oj’-1 - w]’-’ and there exists a con-
stant C > 0 such that

diam(w}) S C VieN
diam(o!) = 7€ M

For the definition of star-shaped domains with respect to a ball, we
refer to [7].

Often, a shape function ¢/ (x) is associated with a particle x! ¢ R?
and it is assumed that the particles are distinct i.e., x! #x}’? if i=j. We
note that when @!nI'=0, then the associated particle
X € of c Q. But when @! N I'#(, then the associated particle x!
could be outside Q. We also divide the set N, into two sets,
namely,

Ny ={ieNy: 0! C Q},
N, ={ieNy: @ NI #0}.

AA
S
—

(=}

We note that N, = Ny UN;, and Ny N N;, = (. We set |N,| = cardNj,.
We now make the following assumptions on the subspace V.

A1: (finite overlap) For i € Ny, let S; be the set of indices j such

that o N ! # . There is a constant x, independent of i

and h, such that

cardS; < k. (2.12)

A2: There are positive constants C,Cy, and C,, independent of i
and h, such that
HDxd’?“Lx(g) <Ch™ 0<|of<q forsomeq > 1,

(o is @ multi-index), (2.13)

Gh' <|of| < Gh* and Ch"' <@ NI < Gh*,
(2.14)
where |w}| is the “area” of w! in R and |@} NI is the
“length” of @ N I" in R*.
A3: There are positive constants C; and C,, independent of h and

i, such that
diam(w"
o <2 ¢, (2.15)
A4: There are positive constants C; and C,, independent of h and
i, such that
d
CillvlE, 0 < h* D 27 < Collvll ) (2.16)
ieNy
d-1
G I\Ul\im <h Z vl < CZHZ/HI%Z(I")? (2.17)
iEN;l
G|Vl <H? D (05— 0)* < Gaololfy ) Vi€ N,
J€S;
(2.18)

for all v = 3"y, vi ¢} € V.
A5: The shape functions reproduce polynomials of degree k, i.e.,

> p(xh¢i (%) = p(x), (2.19)

ieNy

Vpe#*(Q) and xeQ,

where 2* is the space of polynomials of degree k.

Remark 2.5. The assumption A3 implies the first statement of
(2.14). However, we stated them separately since we have used
these statements in this paper. We next note that the inequality
(2.16) in A4 implies a strengthened uniform version of linear
independence of the shape functions {<¢>,f‘}. Also note that (2.16)
and (2.17) in assumption A4 imply that
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INy|~Ch™®, IN/|~Ch™®, and |N,|~Ch " (2.20)

provided the function v = 1 € V,. Here the notation A; ~ B, means
that there are constants Ci, C;, independent of h such that
Cy < |Anl/|Bn| < Ga. It is clear from assumption A5 (take p(x) =1 in
(2.19)) that 1 € V, and therefore {d;f’} form a partition of unity.
We mention that the particles {x!} are used in the construction of
shape functions satisfying (2.19) (see [18]). We further note that
it is possible to prove the inequalities (2.16)-(2.18) in certain situ-
ations for special distributions of the particles {x'}; also see Remark
4.3 in [4]. These proofs require the assumption (2.15).

Examples of subspaces V), satisfying these assumptions can be
found in [2,17,20]. We mention that it is easy to construct smooth
shape functions {¢"}, e.g., RKP shape functions with respect to a
smooth weight function (see [19,17,18]). We assume that
¢ e Q) for all i € N,

In the rest of the paper, we will write xI', !, j’? as Xxj, wj, ¢,
respectively, for notational simplicity, with the understanding that
they depend on h.

We will use a Lagrange multiplier method to determine a un-
ique approximate solution for problem (2.5). To this end, we define
a linear functional ¥ on V,, by

|N ‘ Z Vi, Vo= Zyid’i eV
ieNy ieNy

¥ is different from &, but note that ¥(1) =
bounded linear functional since

} }
_d, _d
Pl (Zl) (Z ) S LR EA e

ieNy ieNy

®(1). Also ¥ is a

(2.21)

where the last inequality is obtained using (2.16) and (2.20). We
consider

vh = {(yh,u) € Vi x R || (2n, Iy, = |2l o + 1P (om) P + 2 < oc}

V" is a Hilbert space and we can show that there are constants
Cy,C,, independent of h, such that

Cull(n, ) llgg, < l12nlly, + 1 < Call(wn, Wy, V(1. 1) € V3

(2.22)

Therefore from (2.4) we see that the norms ||(-,-)|, n and [|(-,-)ll,
are equivalent on V" and the associated constants are independent
of h. We note that the linear functional ¥ is not well defined on
H'(Q), but is well defined on V,,.

Meshless method:

A meshless method to approximate the solution of (2.5) is a
Galerkin method

Find (up, A) € V1
%‘I’(ufh/lh; Z}Hu) = L(U),

satisfying
\ (2.23)
Y(v, 1) € Vy,

where
.%p(uh, A U, /,l) = B(uh

We will give a rationale for using ¥ (in place of @) in (2.23) later in
Remark 3.1.
Let z € C(Q). We define .#,z € V), called the V,-interpolant of z,

V) + P (V) + ¥ (up).

das

2= Y 2(x)$(x)

ieNy

(2.24)

Strictly speaking, .7,z is a quasi-interpolant of z, since .#,z(x;)#z(x;).
We further note that the function z has to be suitably extended out-

side Q in order to define .7}z, since some of the particles x; may be
outside Q. The extension of z to define .7,z has been discussed in [3].

In the following result, we present the interpolation error
estimate.

Lemma 2.2. Let z€ W*'P(Q) N C(Q),p = 2, 0. Then there exists a
constant C, independent of z and h such that

hk+1—s

1z — Fnzllysoo) < C (2.25)

|Z|Wk+l.p(g) .

The proof of this theorem can be found in [17,2].

Remark 2.6. It is important to note that the proof of Lemma 2.2
needs an additional assumption. We assume that for each i € Ny,
there is a ball B; of diameter ph such that

U(l)j C B,

JESi

where p > 1is independent of i. We further note that the proof also
depends on the assumption A5, which in turn imposes certain
restrictions on the distribution of the particles {x;}, which we do
not elaborate here.

To address the existence and uniqueness of the solution of the
problem (2.23), we state the following result:

Lemma 2.3

(a) There is a constant C > 0, independent of h, such that

< Clw, W)l 12, 10
Y (w,v), (v, ) € V).

| By (W, v; v, W]

(b) There exists C > 0, independent of h, such that

C< inf  sup ByW,V; v, [
e s [N PN [T [

(c) Forany (v, ) € Vf’,, satisfying ||(v, ,u)Hvlhp#O,
0< sup By(w,v;v,W).

(w,v)eV[’,,

The proof of this result depends on the fact that V} contains
constants (because of assumption A5) and follows the same argu-
ments used in the proof of Lemma 2.1.

Remark 2.7. Since V;, contains constants, by considering v, = 1 in
the variational problem (2.23) it is clear that 4, = 0 and we can also
show that the problem (2.23) is equivalent to

Find u; € V, such that

B(up, vp) = L(vp) and YP(up) = (2.26)

0, Yo, € V.

We note that the constraint ¥ (u,,) = 0 gives a non-singular stiff-
ness matrix (which will otherwise be singular). This feature, possi-
bly with a different choice of ¥, is always incorporated in a
standard FEM code.

Now it is immediate from (2.9) and (2.26),
B(u—uh,vh) =0, Vy,eV,
and therefore,

: K
|Ll — uh|H1(_Q) < y}lg\t/-, |u — Uh'Hl(.Q) < Ch“U|Hk71(Q) (227)

Thus u;, converges to u only in the “energy norm”, i.e., the H'-semi-

norm. Moreover, using (2.25), we also obtain

K
|uh - .fhu|H1(Q) < \uh - u|H1(Q) + |u - ,ﬁhu|H1(Q) < Ch(‘U‘HkH(Q)

(2.28)

which will be used later in the paper.
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3. Numerical integration in meshless method

To motivate the quadrature in the meshless method, we first
look at the problem (2.23) in detail. We write u;, the solution of
(2.23), as up = 3y, Cj ¢;- Then the problem (2.23) can be written as

Zyu+th(¢l)+H‘ﬁ(T) ch:lia fOl'l.ENmV,uG R,
h

JjeNy JENy

where
Vi = B(y, di) = /qusj -V, dx

O;N0;
and
liIL(¢i)=/f¢idX+/g‘/’id5= fopidx + g¢;ds
JQ Jr Jw; J oy
=fi+ 8 (3.1)

The integrals y;, f;, and g; are computed using quadrature. We define

Vi=1 Véj- Vedx (3-2)

and

=1 fodx+ 4  gpds=f +g, (33)
;i I'no;

where f represents the numerically computed integral [. We note
that the matrix {;} is not symmetric, since

Vi = / Vo;- Vd)idx#][ V- V;dx = Vi
J w; J w;

We next note that for v =37,y vj¢; and w = 3",y Wi¢; in Vi, we
have

B(v,w) = Z Vi YW

ijeNy

and L(v) = Zﬁﬂi -‘ngivi-

ieNy, ieN,
So we naturally define

B (v,w) =" pjow;

ijeNy

and L'(v)=) foi+) gu

ieN, ieN},

(3.4)

Under this definition, the form B*(-, -) is bilinear on V;, x V}, and L*(+)
is linear on V. Since {y;} is not symmetric, it is clear that B"(v,w) is
also not symmetric. Moreover, it can be easily shown that

3 95=0, VieN, 3.5)
JENy

i.e, the “row-sum” of the matrix {y;} is 0, which implies that

B (1,w)=0, YweV,. (3.6)
But, in general, the “column-sum” of {y;} is not 0 and there is
v € V), such that B"(7,1)#0. We also observe that

L= ff+> g #0. (3.7)
ieNy ieN},

It is important to note that several other approaches for performing
numerical integration have been proposed in the literature to
approximate y;. We mention some of them below:

(i) The domain Q is partitioned into small and appropriately
selected subdomains such that each w; and w; N w; are also
unions of these subdomains [16]. Numerical integration is
then performed on each of these subdomains. The choice
of subdomains in this approach allows the numerical inte-
gration of only smooth functions. The computed stiffness
matrix {y;} is also symmetric, but partitioning process could
be ‘expensive’ when w;’s are not simplices.

(ii) In a procedure proposed in [11,12,10], the domain € is par-
titioned into subdomains such that each w; and w; N w; are
also unions of these subdomains. Moreover, these subdo-
mains contain exactly one particle x;. The main feature of
this procedure is that the numerical integration is performed
only on the boundary of the subdomains. Also the matrix
{y;} is symmetric. The effectiveness of this approach for
the lowest order, i.e., when k=1 in (2.19), was shown in
[11,12]; the higher order methods, i.e., k > 2 in (2.19), were
addressed in [10].

(iii) The element y; of the stiffness matrix could be approxi-
mated by performing numerical integration on w; N w;. This
approach was used in [14,15], where the domains w;’s were
considered as spheres. Consequently, the domains w; N j;
were “lens-shaped” and special quadrature formulae were
developed to numerically integrate over such lens-shaped
domains. The matrix {y;}, obtained from this procedure, is
symmetric, but the main drawback of is that the matrix
{y;} does not satisfy the zero row sum condition (3.5).

(iv) Numerical integration on w; N wj, together with a simple
“correction”, to approximate y; was suggested in [4]. This
correction ensured the zero row sum condition (3.5) for
the matrix {y;}; the matrix was also symmetric. The math-
ematical analysis presented in this paper required a certain
assumption on the discretization, which is not easy to check.
Also the analysis is valid for shape functions satisfying k = 1
in (2.19); it could not be generalized for k > 2.We note that
rigorous mathematical error analysis is not available for the
procedures described in (i)-(iii). In this paper, we considered
numerical integration on w; (not on w; N w;) of the form
(3.2) and (3.3) to approximate y; and, unlike [4], our error
analysis is valid for all k > 1 in (2.19).

The meshless method with quadrature to approximate the solu-
tion u of the problem (2.5) is given by

Find (uj,2;) € Vi, satisfying

o . h (3.8)
%ip(uh7ih;y7:u) :L‘(T/)7 V(y,u) ev‘Pv
where
By(W,v; 0, 1) = B (W, v) +v¥(v) + u¥(w) 3.9)

and B'(-,-) and L*(-) are as defined in (3.4). We refer to u; as the
quadrature approximation to u. It is clear from (3.7) that the com-
patibility condition is not satisfied.

Remark 3.1. We note that the main reason for using ¥(-) in (2.23)
and (3.8) instead of @(-), is that the numerical approximation of the
linear functional &(-) is not required in (3.8).

We assume that the numerical quadrature satisfies the condi-
tions described below:

QA1. There exist positive constants # and 7, small enough and
independent of i and h, such that

/ de—/ odx

i

<nloilllell. (e, (3.10)

and
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/ Jds — ][ Jds| <
dwynI’ dwynI’

for a class of functions ¢
satisfying

”DaQHLX(w,)
and

”DMﬁHLx(meF)

< 7100 N TN oeyry (3.11)

€ W™ (w;) and 9 € W™= (dw; N I

< Cldiam()] lell, ), o] < M (3.12)

< C[diam(wi)]imW”Lx(awimr)» |or| < ma,
(3.13)
where C > 0 is independent of i and m;,m, > 1 may depend
on the numerical quadrature as well as on g in assumption
A2.
QA2.
(a) There is a constant C > 0, independent of h, such that

[ (W, v; 0, 1) < ClW, V) g 12, 10y«

Y (w, V), (v, p) € V1. (3.14)
(b) There exists C > 0, independent of h, such that
C< inf sup —ZrW Vol (3.15)
omery ompens, 10V 12, Ol
(c) Forany (v,u) € V’;, satisfying ||(v, tu)Hv’.’,, # 0,
0< sup %, (w,v;o, ). (3.16)

h
(wy)eVy

QAS3. For each i € Ny, let Gj : CZ@,—) — R be a linear functional
given by

:]f Vv~V<j)idx+][ Avp;dx — Vv -iig;ds,

dw;nI'

(3.17)
where 7 is the unit outward normal to dw;NI. We
assume that

Gi(p)=0, Vpe?* and VieN,
where #* is the space of polynomials of degree k.

We first note that the assumption QA2, i.e., (3.14), (3.15), and
(3.16) ensures that the problem (3.8) has a unique solution. In
the following lemma, we show that (3.14)-(3.16) hold under a
somewhat restricted condition on the parameter #.

(3.18)

Lemma 3.1. Suppose there is a positive constant C such that the
quadrature satisfies (3.10) with n < Ch. Then %y (w,v;v, 1) is
bounded, and for C small enough, %y (w, v; v, ) satisfies the inf-sup
conditions, i.e., (3.15) and (3.16) are satisfied.

Proof. Let
w=> wd, v=Y v eV
ieNy ieNy

We first estimate |B(w, v) — B*(w, v)|.
Recalling the definition of # in (3.10) and using (3.6) and (2.18),
we have for i € Ny,

|B(W7 ¢1) - B*(Wv d)l)‘
Vw - V;dx —

Jw; w;

/Vw w;) - Vd),dx—/ V(w—w;) - V¢;dx

Vw - V¢;dx

Vd)j -V dx

w;

< ij—w,\]/ Ve, Vordx -

JESi

1
2
<Nl Vs Vil w,) (Z w; — wf|2> NG

JES;

< Conh* W h T (Wl VE < ChE Wi 0. (3.19)

where we used (2.13) with |«| = 1. Therefore, squaring both sides of
the above inequality and summing over i € N;,, we get

Z [B(w, ¢;) — B"(w, ¢y)> < Cp*h™? Z Wi (op S anhd’2|w\12{1 ©

ieNy, ieNy

Thus, recalling that v = 3,y vi¢; and using (2.16), we get

B(w,v) - B'(w,v)| = | viB(w, ¢;) — B'(W, )]

ieNy

1/2 1/2
< (va) [Z[Bw B*wda)]}

ieNy ieNy

1/2
d_
= Cnht ! Wy g (Z v,?)

ieNy

1
< Cnh Wl o) 171l 5 0)-

(3.20)

We now prove the boundedness of %4, i.e., (3.14). From the defini-
tion (3.9) of %, (w,v; v, u), we get

By(W,v; v, ) = Bw(W, V; v, 1) — [B(w, v) — B (w, v)]. (3.21)
Therefore, using (3.20) and part (a) of Lemma 2.3, we get

—B'(w, )|

< Gl (w, V)Hv’;”(”a /‘)Hv’.}, + Cznhil‘W|H1(Q)Hy”Lz(Q)

< C+nh™) W, V)l (2, )y

|@:}/(W7 V; U,‘Ll)l < "%‘1’(W7 Vi v, ,l,l)‘ + |B(W7 U)

Thus by taking n < Ch (C does not have to be small enough) in the
above inequality, we get (3.14).

We now prove the inf-sup condition (3.15). For a given
(w,v) € V’.}, we choose v=w+ v eV, and = —-v+ P(w). It can
be shown following the proof of (2.7) that

Bo(W,v; v, 1) > Cil|(w,V)[lg and [[(2, wllyy, < ClW, V).

(3.22)
Therefore, from (3.21),
By(W,v; v, 1) > C||(W, V)7 — Bw, v) - B'(w, )]. (3:23)
Since v = w + v, v could be written as
v= Z vid;, where v; =w; + V.
ieNy,
Therefore, from (2.16) and (2.20)
12[17 g < Ch* D" 02 = Ch* " (wi +v)* < Ch* Y (w? +1?)
ieNy ieNy, ieNy,
=Ch* Y w2+ Ch SV < w7 g + V2. (3.24)
ieN, ieNy
Using the above in (3.20), we get
[B(w, ) — B'(w, v)| < Ch™ " Wi g [ Wy, ) + V]
< Coph Wl gy + [ Wiy + V]
< G Wl o) + P (W) + V7]
= Conh™|(w, V)[4 - (3.25)
Therefore, from (3.23), we have
Ry (W, V50, 11) = [Cr — Conh M| (w, V) [
Finally, considering #h~' small enough such that [C; — Coph '] >

C >0, we get
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By(W,v; 0, 1) > C|(W, V)3
We have already seen from (3.22) that
12, 1)y, < W, W)y

Thus we proved the inf-sup condition (3.15). The proof of (3.16) is
similar to Lemma 2.1(c) and we do not provide it here. O

Remark 3.2. We note that Lemma 3.1 was proved under a restric-
tive condition on #, namely, we required that 1 < Ch, with C suffi-
ciently small. Computations suggest that the condition # = O(h) is
not necessary for the existence of a unique solution of the problem
(3.8) (1 sufficiently small, independent of h, is sufficient). We will
further comment on the dependence of # on h later in this paper.

Remark 3.3. We will indicate in this remark that it is possible to
choose a quadrature rule that yields a small # in (3.10) in the
assumption QA1. We consider the set

;= {¢ € R?: ¢ = x/diam(w;), where x € w;}.

Clearly, diam(&;) = 1. For ¢ € W™= (w;) satisfying (3.12), we define
0(&) = o(x) = g(édiam(wy)). Then it is easy to show that

H@”Lx(a),-) = el (e and HD“@”LX((Z),-) < CH@HLX((D,V o] < my.

(3.26)

We now consider a n;-point quadrature rule on @; such that

[ e~ f e <aial, o,

o] = my, (3.27)
where m; depends on the quadrature rule and 7] is inversely propor-
tional to n;. For example, we may consider n;-panel composite trap-
ezoidal rule on ;. It is well known that for n;-panel composite
trapezoidal rule, (3.27) is true with m; =2 and # = n;2/12. We
may also consider an n;-point Gaussian quadrature rule, in which
case we have 77 = O(n;™). Now from (3.26) and (3.27), we have

i

/ 2(8)de - ][m[@(:) de

where 1 = Cjj is inversely proportional to n;. Thus we can choose a
quadrature rule (i.e., number of quadrature points n;) such that the
associated 7 is small. Finally, we get (3.10) by employing a standard
scaling argument to the inequality (3.28). Using similar arguments,
we can show that we can choose a quadrature rule with a small 7 in
(3.13). We further note that the functions ¢ and 9 (in (3.10) and
(3.11) respectively) that we numerically integrate in this paper sat-
isfy the conditions (3.12) and (3.13).

<l @y 1 =m, (3.28)

Remark 3.4. For each i< N;, we define the linear functional
G; : H*(w;) — R as follows:

G = [ Vv-V</>idx+/ Avqb,—dxf/ Vo-figds.  (3.29)
. Jow;nI’

[on w;
It follows directly from Green’s formula that

Gi(p) =0, VpeZ* (3.30)
In fact, (3.30) is true for any smooth function p. The linear functional
G;, defined in (3.17), is obtained by using numerical integration on
each integral in G;. In general, (3.30) is not true if G; is replaced by
G;.In (3.18) of assumption QA3, we require the exact same property
to hold for G;.

Remark 3.5. It is instructive to illustrate the assumption QA3, i.e.,
(3.18) in simpler situations. Let @ ¢ R?* and k = 1. Considering
p(x1,X2) = x; in (3.18), we get

%dx_

Gi(xi1) = o,
;

/ nigds =0, ieNy, (3.31)
dw;nI’
where 7i = (n;, ny). Similarly, considering p(x1,x;) = x, in (3.18), we

get

G (x)) = / 99 gy — /a Fn2¢ids =0, i€eN.
;N

J wj X2

(3.32)

Thus for k =1, the quadrature must satisfy the two conditions
(3.31) and (3.32) for each i € Ny. In particular, the quadrature must
satisfy

7/ Vdx=0, VieN. (3.33)
J w;

We illustrate now (3.18) for k = 2. Considering p(x;,x;) = x? in
(3.18), we get

Gx)=2 /xl%dx+ ¢>,-dx—/ X1y ¢ds| =0, i€ Ny
J w; ()Xl J w; J dmynll

(3.34)

Similarly, considering p(x;, ;) = X1x, and p(x;,x;) = x3 in (3.18), we
get

G}‘(xlxz):][ <x2%+x1 %> dx—][ (X21y + X1 12) ¢;ds = 0,
w; ow;NI”
(3.35)

G (x3) _2{][ x;%dx+][ (bidx—/f) .mrxznzd)ids} =0,
(3.36)

for i € N,. Thus for k=2, the quadrature must satisfy (3.34)-
(3.36) in addition to the assumptions (3.31) and (3.32). We will
present quadrature schemes satisfying assumption QA3 later in
this paper.

4. Effect of numerical integration

In this section, we will study the effect of quadrature on the
meshless method. In particular, we will compare u—u; with
u — uy, where u, up, and uj, are defined in problems (2.5), (2.23)
and (3.8) respectively. We will assume u to be smooth; in particu-
lar, u € C**'(Q). This assumption will allow us to present the main
ideas simply and effectively. We will first prove the so called
Strang lemma.

Lemma 4.1. Suppose (up, Ap)and (uj, Z;)are the solutions of problems
(2.23) and (3.8) respectively. Let (w, 1) € V'l}, be arbitrary. Then there
exists C, independent of h, such that

[l — w20 = 23,
[B(w, v) — B'(wW, )] + [L"(2) — L(v)]

< C|l(up — w, i — 2|y, + sup
(@, 10l s,

(v.p)evh,

(4.1)

Proof. We first note that (u; — w, 2; — 1) € V. Therefore, from the
inf-sup condition (3.15) we get

By (U — W, 2 — 750, 1)
(@, )1y,

I, —w, 2 = Dlly, <C sup
(v.u)ev’.},

(4.2)

Now,
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By(Uy, — W, 15y — 15 0, L)
= By (Uupn — W, — 4 U, [) + Bu(W, 1; v, 1) — Bl(W, J; 0, 1)
+ By (U, Ay v, 1) — By (Un, 2n; U, 1)
= By(Uup — W, — 4 v, )t) + B(w, v) — B*(w, v) + L' (v) — L(v).

Therefore, from (4.2) and (3.14), we get

(i, —w, 2 = Allyy, < C sup | B (U = W, 2 — 75 0, 1)

wpevt, 12510l
+ Bw, ) =B (w,2) +L'(2) = L(2)
< Clj(up —w, Ay — b“v';y
IBw, v) = B (W, ) +L'(v) — L(2)|
1w )l

+C sup
(v)evh,

Finally, using the triangle inequality and the above, we get
Il(un — th, 2n = 2p)llyn,
< utn = w2 = Dy, + 10t = w, 2= Dl
<l = w, = 1)l

B(w, v) — B'(w, v)] + [L"(v) — L(v)]] ,

+ Ssu
P 1wl

(V.u)eV'.},

which is the desired result. O

In the analysis presented of this section, we will apply (4.1)
with w = #,u and estimate each term on the right-hand side of
(4.1). Recall that .7 u is the Vy-interpolant of u, as defined in
(2.24). From the interpolation error estimate (2.25), we have
HﬂhuHWHX@ < \|u\|wk+m(m + ju— fhll”Wkn.x(Q)

< C||u||Wk71.x(g). (4.3)
For a smooth function v and i € N, let
’ D*v(x; _
Tiv=>" # (x — )" (4.4)
lor| <k :

be the kth degree Taylor polynomial of v centered at x;, where x; is
the center of the ball o; C w; (recall that w; is star-shaped with re-
spect to o0;). It is well known that [7]

" Chkﬂ—j )
0= Tithwiio < g — i 1wy = 0.1 ke 1.
(4.5)

Now consider Tf-‘lhu - the kth degree Taylor polynomial of .#,u cen-
tered at x;. We set

Ri=gu—Tisu, ieN,. (4.6)
Then from (4.3) and (4.5) with v = .,u, we get

kt+1-j k+1—j
IRilyie o) < CH 10Uty < CH Tty g (4.7)

)-
We will use this estimate later for j = 1,2 in the next lemma.

Lemma 4.2. For i € Ny, let G; and G; be the linear functionals as
defined (3.29) and (3.17) respectively. Then there exists a positive
constant C, independent of i and h, such that

C(’? + ,L_)hk+d—1 |

k+d-1
Ci’[h ||u||wk.1.x<!2)

Uy 1€ Ni;

Gi(Fhu) = G; (Fpu)] < { o
ieN.

Proof. For each i € N, we write .#,u as

Jpu = Tf‘]hu + R,

where R; is the remainder defined in (4.6). Since Tfﬂ,,u is a polyno-
mial of degree k, we have G;(T¥.#,u) = G;(T*.#4u) = 0 from (3.30)
and (3.18) and therefore,
Gi(Ih) — G (Fhu) = Gi(T¥.s0u + R) — G} (TE.su + Ry)

= Gi(Ri) — G; (Ri). (4.8)

1

Let i € N},. Then, using (3.10) and (3.11), and the assumption A2,

IGi(R) — G; (Ry)| <

+

/ AR,-(/),—dx—/ AR; o, dx

N

+ VRi~ﬁ¢id$—

loNall daynI’
<N IVR - Vil + MO AR il )
+ 10w N[ || VR; - ﬁ¢il|Lx(8(u;mF)

VR; - ﬁd), ds

< Cnh Rl e o) + R Rily2 o

d-1 k+d—1
+ CTH Ry < €00+ DR i g

(4.9)

where we used (4.7) to obtain the last inequality.
For i€ Ny, we have @; C Q and therefore ¢;|,, =0. Now
following the arguments leading to (4.9), we get

IGi(Ri) = G; (R)| < Cnh* M Jul|yyaer gy, 1€ N

Thus from (4.8) and (4.9), we get the desired result. O
We now prove the main result of this paper.

Theorem 4.1. Suppose the approximating subspace V, and the
numerical integration scheme satisfy conditions A1-A5 and QA1-
QA3, respectively. Then for small 1, there is a positive constant C,
independent of u,n, t, and h, such that

x I k k-1
|t — Ul ) < CIH" + (1 + DR +1h™ ]y -
Proof. Let .7,u be the V,-interpolant of u. We note that B(D, v) =0

and recall that B"(D, ) = 0 for an arbitrary constant D (see (3.6)).
We then substitute (w, 1) = (#yu + D, 4,) in Lemma 4.1 to get

I = 4, = 75l

< C{Huh = Il — Dl g

|[B(Sntt, v) — B (Sntt, )] + [L'(v) — L(®)]|

+ Su
b 1wl

(veVly

} (4.10)

We will now estimate the right-hand side of (4.10).
Since the solution u is smooth, we have for i € Ny,

/fqbidx:—/ Au ¢;dx

:7/ A(Fntt) ydx + / A(htt — 1) ¢y dx

and

/ g¢ids = /
NI’ Jow;nI’

:/ V(Iu) - fihsds +
Jow;nI’

Vu-iig;ds

V(u-— spu)-ip;ds.

Jow;nI’

Therefore, using the definition of the linear functional G; (see (3.29))
we get,
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B4l ) — L) = Bl ) — / fyelx / gds
/ V(Shu) V¢,dx+/ A(Fpu) ¢;dx

—/ V(Spu) - n¢1ds+/ A(u — #pu) ¢;dx
Flonals

- V(u— fpu) - ig;ds = Gi(Fyu)
dwinI’

+/ Ae; ¢;dx — Ve, - il ¢;ds, (4.11)
w; dw;nI’

where e; = u — .7 u. Likewise, repeating the argument leading to
(4.11) with [ replaced by f, we get for i € Ny,

B (Shu, ¢;) — L*(¢;) = G; (Sput) + / Ae; ¢;dx — Ve, - i ¢;ds,
w; dw;nI’

(4.12)

where G; is the linear functional defined in (3.17). Therefore com-
bining (4.11) and (4.12), we get for i € N,

B(snut, 1) — B'(Snlt, ) + L (1) — L(ehy)

= Gi(Fpu) — G*(Fpu) +/ Aejp;dx — 4 Aep;dx

w;

- Ve, - i d;ds +

ow;nI’ ow;nI’

Let i € N;. Then using (3.10) and (3.11), Lemma 4.2, (2.25), and
assumption A2 in (4.13), we have

IB(Lhtt, i) — B*(Sntt, i) + L (i) — L(¢by)]
< Gi(Fntt) — Gi (Snu)| + nl il [|Aer il o,

+ 7|00 N T[||Ver- il o,

Cop+ DRt i), Vi€ N, (4.14)
Now leti € N}, so $ilow, = 0 and using (3.10), Lemma 4.2, (2.25), and
assumption A2 in (4.13), we have
IB(hlt, i) — B (Snt, i) + L (¢s) — L(y)]

< Gi(ntt) = Gy (Snu)| + nlaif[|Aer il o,
< CnH ull e g, V€N (4.15)
We now estimate the second term of the RHS of (4.10). Let

V=3, Vi¢; be an arbitrary element in V,. Then from (4.14),
(4.15), (2.16), (2.17) and (2.20), and a trace-inequality, we have

Ve, - ii ;ds. (4.13)

|B(Ahu,v) — B (Shu,v)+ L (v) — L(v)]
< va[B(fhu,cbi)—B*(fnu7¢f)+L*(¢i)—L(¢i)]|
ieNy
sz (Snlt, ) — (yhuvﬁbi)'i_l‘*(d’i)_l‘(d’i)]'
leN’

1/2 1/2
< (Z v%) (DB(fhu,qsf)—B*(fhu7¢i>+L*<¢i>—L<¢i)2)
1eNh 2 leNh 2
+(Zv?) (DB(fhu,@)B*(fhu,@)wwf)L(@)F)

ey N
ieNy ieNy

12
k+d—1) nr(1/2
<Cnh* INZ\/ (Z”?) llull s )

N
ieNy

1/2

k+d—-1 1/2 k-1

+C+DR TN 02 | ([l g < CH 2l 0
ieN;I

+h+ 020 Ul < g

<R [+ h(p+ O [l 121 0 (4.16)

Then, from (4.10) and the Poincaré inequality, we get

|uh _umHl(!?) < H(uh _u;J'h _/L;;)HV’\;,
<Cinfjup = 73U =Dl q)

12111 )
@)
0V (o, #)th

< Clun— Fnty +CL0 + TR+ h 1]y g

+CH [+ (4 ) ] yior < ) SUP,

(4.17)
Finally, from (2.27) and (2.28)

U — Uhlyr ) < U — Unlygr o) + [Un — Uplyr g

< I + (7 + D" + gl e g
which is the desired result. O

For k = 1, we only require the quadrature to satisfy a reduced

form of QA3, namely, we assume that (3.18) of QA3 is satisfied only
forie Nj.
Theorem 4.2. Suppose the approximating subspace V, satisfies
conditions A1-A5 with k =1. We consider numerical integration
scheme satisfying QA1-QA3, but (3.18) of QA3 is satisfied only for
i € Nj. Then for small i, there is a constant C, independent of u,#, T,
and h, such that

|t = Uyl gy < Clh+ 1+ T] Ul g

The proof of this result can be obtained by slightly modifying
the proof of Theorem 4.1; we do not provide the details here.

Remark 4.1. It is clear from Theorem 4.1 that we do not have
optimal order of convergence, i.e., |u — Uil (o) = O(h"’l [h + n]). But
if we consider # < Ch, then we get

" k
lu— uh|H1(Q) =0(h").

This means that if we increase the accuracy of the quadrature as h
becomes smaller, we restore the optimal order of convergence. This
effect of numerical integration in meshless method is very different
from the effect of numerical integration in FEM.

5. Numerical results

In this section, we present computational data illuminating the
results in Section 4 in one dimension. We will also develop numer-
ical integration rules satisfying (3.18) of assumption QA3.

We consider the one dimensional version of the problem (2 5)
with Q= (0,1). Let u(x)=¢e*—(e—1), satlsfymg d(u fo udx
=0, be the exact solution of (2.5) with L(v)=— /0 e*v(x)dx
+ewv(1) — v(0). To approximate this solution by the meshless
method (2.23), we first construct a C*(R), symmetric, RKP basic
shape function ¢(x) with support [—R, R], satisfying

Y oox—-j)=1 and > jox—j)=x

jez jez

VX € R,

with R = 1.8 (see [2,18,19]). We then consider a natural number
N > 1, and for h = 1/N, we let

Np={x;=ih: i=-1,0,1,...,N N+ 1}.
For each x; € N;, we define the shape function

gi),-(x)Ed)(%—i), xeQ=(01) (5.1)

Then for
¢i (X) = a1

ieNpw;= (%, p;) = (ih—Rh,ih+Rh)NQ and supp
= [oy, B;] N Q. We note that fori=2,3,...,N — 2, we have
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(ih —Rh,ih +Rh) ¢ Q, o;=ih—Rh,
Bi=ih+Rh and (o) = ¢i(f) = 0. (52)

Thus Nj = {2,3,...,N—2} and N, = {-1,0,1,N—1,N,N + 1}.
It can be easily shown that the shape functions {q&,-}"’tl1 repro-
duce polynomials of degree k =1, i.e.,

i=

N+1

3" p(x) ¢i(x) = p(x),

i=—1

Vp e 2'(Q).

We next show a procedure to obtain a quadrature scheme that sat-
isfies the condition (3.18) of the assumption QA3. Suppose f(x) is
smooth in [0y, B;] and let [;(f) = '/f_'f(x) dx. To approximate I;(f), we
seek a p-point quadrature rule of ‘the form

QL) = > W) (&€l p) and W dependoni)  (53)
s=1

with the property that
Qu(¢) =0, ieN;. (54)

This is precisely the condition (3.18)in 1 — d for k = 1 (see (3.33) in
Remark 3.5). We start with a p-point quadrature rule for the inter-
val [0y, §;] of the form

=

QLN =Y wi(z). (5.5)

s=1
We now define z; = z, and
Ws = Ws + 0;Ws d}(25) (5.6)
in (5.3), and choose 0; such that (5.4) is satisfied. We first note that

P

) p
ng (‘P:) = Zwsd);(zs) = Z [Ws + 0; wg ¢:(Zs)]¢i(zs)
s=1 s=1
p p
=Y wsdi(zs) + 00y ws (2]

Thus imposing condition (5.4), we get

L / i o / 2 L 72?:1WS¢;(ZS)
> widi(zs) + 0 ;Ws [¢i(z)]* =0 or, 6; = AT

s=1

(5.7)

Thus Qéc(f) satisfies the condition (5.4) and we refer to Qéc(f) as the
p-point corrected quadrature.

We now consider the quadrature rule Q;(f) in (5.5) to be the
p-point Gauss quadrature rule. It is well known that the points
{z;}¢_, are symmetrically placed in the interval (o;, ;) about the
mid-point m; = («; + f;)/2; the weights {w;}?_; are also “symmet-
ric”, i.e., Wy = Wp 15, §=1,2,...,p. We next recall that the shape
functions ¢;(x), defined in (5.1) are symmetric in the interval
(i, ;) about the mid-point m;. Consequently, ¢;(x) is anti-symmet-
ric in the interval (a;, ;) about m;. Therefore, it is clear that

. p
Qi(¢) =Y wigi(z) =0, VieN;.
s=1

Thus the Gaussian quadrature Q;(f) satisfies (5.4); in fact, §; = 0 in
this situation and Q,(f) = Qg (f).

We now present numerical experiments to illuminate the re-
sults in Theorem 4.1 for k = 1; in particular we illuminate the re-
sult in Theorem 4.2. We considered u=e*— (e —1) to be exact
solution of (2.5) with &(v) = f(} vdx. The function u was approxi-
mated by u;, € V, = span{¢;(x)}}""", - the solution of the meshless
method with numerical integration (3.8), where ¢; is defined in
(5.1). We recall that the linear functional ¥(-) was used in the
meshless method (3.8) to compute u;. We employed the p-point

Table 1
Standard p-point Gauss rule.

[u =yl o)

p=28 p=16 p=32
1/10 1.3480E-02 3.4015E-03 3.3906E-03
1/20 1.2856E-02 1.7655E-03 1.7426E-03
1/40 1.2527E-02 9.3409E-04 8.8369E-04
1/80 1.2364E-02 5.4747E-04 4.4516E—-04
1/160 1.2284E-02 3.9752E-04 2.2374E-04
1/320 1.2244E-02 3.5257E-04 1.1285E-04
1/640 1.2224E-02 3.4182E-04 5.7922E-05
1/1280 1.2214E-02 3.3982E-04 3.1563E-05

The H'-seminorm of the error, u — Up |1 (o) where u(x) = e* — (e — 1) and uj, is the
approximate solution obtained using standard Gaussian quadrature. The shape
functions reproduce polynomial of degree k = 1.

Gauss quadrature rule Qg(f) to numerically integrate the relevant
terms, e.g., 7; and I} (see (3.2) and (3.3)). We note that we did
not approximate the boundary term in (3.3) in our 1 — d example
and so have 7 =0.

We used p = 8,16, and 32 in Q; (f) and computed the seminorm
[u — Ul - We note that i decreases as p increases. We presented
these results in Table 1. We also present the log-log graph of
[u — uj |y o With respect to h in Fig. 1.

We observe from Table 1 that the error [u — uj|,1 o, decreases as
h decreases. Moreover, for p = 16, we observe from Fig. 1 that
[u — uj |y o) = O(h) at the beginning, but “levels off” for smaller val-
ues of h. For p = 32 the pattern is same, but the error is O(h) for few
more smaller values of h. This pattern suggests that
|t — 1yl ) = OCh + ).

We will now show that the error [u — uj|; q, is not O(h +n)
when the underlying quadrature rule does not satisfy the assump-
tion (5.4); we will show that the error increases as h becomes
smaller. We construct a quadrature rule on (;, ;) such that the
quadrature points are not situated symmetrically about the mid-
point m;.

Consider the mapping h: [-1,1] —

y=hz)=2z+01(z>-1).
Clearly,
W(z)=1+02z>0 Vze[-1,1].

[-1,1] given by

Gauss rule (uncorrected): k=1

10
1072k 8-point ¢ o—4
g
£ 107 1
=}
El
16-point
107} 1
32-point
107 -4 .—3 .-2 -1
10 10 10 10

h

Fig. 1. The loglog plot of |u—uj|,n,, with respect to h.u; is the approximate
solution obtained using p-point standard Gaussian quadrature (symmetric) with
p=238,16, and 32.
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Consider

1 1
I(g) = / FULE / sh@)H @) dz

The integral on the right could be approximated by the standard
p-point Gauss quadrature, given by

p
I(g) =Y vsg(h(L)H (&),
s=1

where {{;} and {v,} are standard Gauss points and Gauss weights
respectively for the interval (—1,1). This induces an associated
p-point non-symmetric Gauss quadrature Q.(g) on (-1,1) to
approximate I(g) given by

p

Quslg) =) 8(l),

s=1
where

Z/?s =V hl(gs)v égs = h(Cs)

Clearly #™ and {{* are not symmetric. It is well known that the “pre-
cision” of standard p-point Gauss quadrature is (2p — 1). It can be
easily shown that the “precision” of the associated p-point non-
symmetric Gauss quadrature is (p — 1).

The p-point quadrature Q,,(-) induces the associated p-point
non-symmetric Gauss quadrature Qﬁ,s(-) for the interval (o, 8;)
given by

) p
Q) =Y wif(z),
s=1

where
Z;'IS _ ﬁi ; % ‘:?s + ﬁi '5 i and Wi;s _ ﬁi ; Qi U;ls. (58)

We note that
Qis(¢))=0, foricNj.

Thus Qf.ls(f) does not satisfy the assumption (5.4).

We computed u;, - the solution of the meshless method (3.8)
with numerical integration, where we used p-point Qﬁis(f ) to com-
pute the relevant integrals. We computed the error |u — uj | o, for
p =28,16,32, and 64, and presented the data in Table 2. We also
present the log-log graph of |u — U |1 () With respect to h in Fig. 2.

We observe from Table 2 and Fig. 2 that for p = 8, the error in-
creases as h decreases and it “levels off” for smaller values of h. For
p = 16,32, and 64, the error first decreases and then increases. The
data suggest that [u — uj,1 o is not O(h +1).

We now consider a quadrature rule Q;..(f) for the interval
(o4, B;) given by

Table 2
Non-Symmetric p-point Gauss rule.
h [u—ug|p @

p=38 p=16 p=32 p=64
1/10 1.1470E-01 4.0789E-03 3.3921E-03 3.3903E-03
1/20 1.4432E-01 3.4066E—03 1.7500E-03 1.7424E-03
1/40 2.0611E-01 4.6066E—-03 9.2577E-04 8.8352E-04
1/80 3.4362E-01 8.4159E-03 6.9956E—04 4.4500E—04
1/160 5.3300E-01 1.6622E-02 1.1156E-03 2.2388E-04
1/320 6.8533E-01 3.3220E-02 2.2158E-03 1.1615E-04
1/640 7.7491E-01 6.6244E—02 4.4590E-03 8.2020E-05
1/1280 8.2283E-01 1.3075E-01 8.9503E-03 1.2066E—04

The H'-seminorm of the error, |u — u;|,; (o Where u=e*—(e—1) and uj, is the
approximate solution obtained using “non-symmetric Gaussian quadrature”; the
quadrature does not satisfy the assumption (5.4). The shape functions reproduce
polynomial of degree k = 1.

Non-symmetric Gauss rule (uncorrected): k=1
10

8-point
10k 16-point
= 107} 32-point E
= P
T
=} =
= 10 3 | i
1074F 64-point i
10_5 -4 .73 .72 -1
10 10 10 10

Fig. 2. The loglog plot of |u — Ul (o) with respect to h.u; is the approximate
solution obtained using non-symmetric Gaussian quadrature (uncorrected) with 8, 16,
32, and 64.

) P
Q) = > Wif(2)
s=1
that satisfies (5.4), i.e.,
Quec(#) =0, VieN;. (5.9)

Using the ideas presented at the beginning of this section, specifi-
cally, using (5.3)-(5.6) and (5.7), we define z!* = z* and

W = W+ 0w (2)

where z* and w’ is defined in (5.8). We choose 6;, as in (5.7), such
that Q'(-) satisfies (5.9). We refer to Q' (f) as the corrected non-
symmetric Gauss-rule.

We again compute u; - the solution of the meshless method
(3.8) with numerical integration, where we used p-point Qﬁm(f)
to compute the relevant integrals. We present the error
|u—ujly o and the values of h in Table 3. We also present the
log-log graph of |u — uj |, with respect to h in Fig. 3.

We observe from Table 3 and Fig. 3 that the error |u — uj|; o
behaves differently than the error given in Table 2 and Fig. 2. More-
over, Fig. 3 suggests that [u — uj |1 o) = O(h +17), which illuminates
the main result of this paper for k = 1. Thus the data in Tables 2
and 3 strongly suggest that the assumption QA3 on the numeri-
cally quadrature is necessary.

Table 3
Corrected non-symmetric Gauss rule.
h |u— ”Z‘Hl(ﬂ)

8 points 16 points 32 points 64 points
1/10 4.8825E-03 3.4363E-03 3.3907E-03 3.3903E-03
1/20 3.4354E-03 1.8473E-03 1.7430E-03 1.7424E-03
1/40 2.7885E-03 1.0985E-03 8.8441E-04 8.8350E-04
1/80 2.5133E-03 8.1143E-04 4.4643E-04 4.4490E—-04
1/160 2.3944E-03 7.2840E—-04 2.2604E—04 2.2327E-04
1/320 2.3407E-03 7.1009E—-04 1.1710E-04 1.1193E-04
1/640 2.3154E-03 7.0752E-04 6.5600E—05 5.6097E—-05
1/1280 2.3031E-03 7.0793E—-04 4.3936E-05 2.8048E—-05

The H'-seminorm of the error, |u — uj |, (@ Where u(x) = e* — (e — 1) and u;, is the
approximate solution obtained using corrected non-symmetric Gaussian quadrature.
The shape functions reproduce polynomial of degree k = 1.
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Corrected non-symmetric Gauss rule: k=1

10 T T
G—Q—M a
8-point
10°F E
16—point
=T
=
=]
]
=3
107 1
32-point
64-point
107 . .

10~

Fig. 3. The loglog plot of [u— Uil g with respect to h.u; is the approximate
solution obtained using corrected non-symmetric Gaussian quadrature with 8, 16, 32,
and 64 points.

6. Remarks and conclusions

In this paper, we have developed a mathematical framework to
analyze the effect of numerical integration on meshless methods
employing shape functions that reproduce polynomials of degree
k > 1. The main results are summarized as follows:

e One of our main assumptions on the numerical quadrature is
that it satisfy a form of Green’s theorem, given in (3.18) in
QA3. Using numerical integration rules that satisfy (3.18), we
have proved error estimates.

e Numerical integration rules, satisfying the assumptions men-
tioned in this paper, automatically yield the so called “zero
row sum condition” (see (3.5)). This was one of the main
assumptions that was used to obtain a similar error estimate
in [4] for the case k = 1.

e Our results indicate that numerical integration with increased
accuracy is required as h — 0 to obtain the optimal order of con-
vergence. The numerical results presented in this paper strongly
support the results of this paper.

We have considered a scalar second order Neumann boundary
value problem with constant coefficient in this paper. The results
in this paper can be extended to a general coercive Neumann prob-
lem with non-constant coefficients.
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