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Abstract

In this paper, we have obtained an approximation result in the Gener-
alized Finite Element Method (GFEM) that reflects the global approxima-
tion property of the Partition of Unity (PU) as well as the approximability
of the local approximation spaces. We have considered a GFEM, where
the underlying PU functions reproduce polynomials of degree l. With the
space of polynomials of degree k serving as the local approximation spaces
of the GFEM, we have shown, in particular, that the energy norm of the
GFEM approximation error of a smooth function is O(hl+k). Estimates
in the W t

p-norm have also been established. This result could not be ob-
tained from the classical approximation result of GFEM, which does not
reflect the global approximation property of the PU.

Keywords: Generalized finite element method; partition of unity; approx-
imation; quasi-interpolation, error estimates.

1 Introduction

For last 50 years, the classical Finite Element Method (FEM) has been ex-
tensively used to approximate solutions of partial differential equations (PDE).
From early nineties, there has been a growing interest in modifying the classical
FEM, so that the modified methods either do not require a mesh or use a very
simple mesh. As as consequence, these methods could be used to address prob-
lems with complicated geometry. One of these methods is called the Generalized
Finite Element Method (GFEM), which was first introduced in [5] and further
developed later in [6], [12].

In GFEM, one starts with a finite open cover {ωi}N
i=1 of the underlying

domain Ω of the PDE. The unknown solution of the PDE is accurately ap-
proximated locally in ωi using local approximation spaces Vi, which contains

∗Department of Mathematics, 215 Carnegie, Syracuse University, Syracuse, NY 13244. E-
mail address: canitesc@syr.edu. This research was partially supported by the NSF Grant #
DMS-0610778.

†Department of Mathematics, 215 Carnegie, Syracuse University, Syracuse, NY 13244. E-
mail address: banerjee@syr.edu. This research was partially supported by the NSF Grant #
DMS-0610778.

1



polynomials or non-polynomial functions, or both. Then these accurate local
approximations, say ξi ∈ Vi, of the unknown solution, are “pasted together”
using a Partition of Unity (PU), {φi}N

i=1, subordinate to {ωi}N
i=1, to obtain the

GFEM global approximation of the unknown solution, namely
∑N

i=1 φiξi. The
proper choice of local approximation spaces Vi is a crucial aspect of GFEM.
Functions in Vi are chosen using a priori available information about the un-
known solution, such that they mimic the unknown solution locally in ωi; for
examples of Vi, we refer to [3], [6], [12].

It has been shown in the main approximation result of GFEM (see [6], [12],
[3]) that the accuracy of the GFEM global approximation of the unknown so-
lution of the PDE depends only on how accurately the functions ξi ∈ Vi ap-
proximate the unknown solution locally in ωi, i.e., the accuracy of the global
approximation depends only on the accuracy of the local approximation in Vi.
But often the PU functions {φi}N

i=1 have their own global approximation prop-
erty, i.e., a linear combination of φi (which becomes a global function defined
on Ω) may approximate a function defined on Ω with a certain accuracy. For
example, the standard piecewise linear “hat functions” used in FEM form a PU
subordinate to the “finite element stars” associated with a finite element trian-
gulation of Ω, and it is well known that they have good global approximation
property. The main approximation result of GFEM does not reflect the global
approximation property of the PU functions.

It has been known as a “folklore” in the engineering community that the use
of PU functions, with good global approximation property, enhances the global
accuracy of the GFEM global approximation. In fact, this feature was stated as
a mathematical statement in Theorem 3.6 in [1] without proof. To the best of
our knowledge, the proof of this result is not available in the literature. In this
paper, we present another approximation result for GFEM, which incorporates
the global approximation property of PU functions. We have considered PU
functions that “reproduce polynomials of degree l” (see (5)); this property yields
good global approximation property of the PU functions {φi}N

i=1 (see Theorem
2.7). We have considered Vi to be the space of polynomials of degree k. Our
approximation result for GFEM involves both l and k and provides an enhanced
global accuracy of the GFEM global approximation, provided the approximated
function has enough smoothness. This result could not be obtained from the
main approximation result of GFEM, as given in [6], [12]. Our result is similar
to the result stated in [1]. But we mention that PU functions in [1] satisfied a
more general “quasi-reproducing” property; the class of PU functions considered
in this paper form a sub-class of the class of “quasi-reproducing” PU functions.

The organization of the paper as follows: In Section 2, we have defined
the preliminary notions in GFEM, the main approximation result for GFEM,
the notion that the PU functions “reproduce polynomials of degree l”, and the
associated global approximation result for such PU functions. In Section 3,
we presented our main approximation result (Theorem 3.6), which involved the
construction of a quasi-interpolant of the approximated function. In Section 4,
we presented numerical results illuminating the main result of this paper. We
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have also commented on the regularity of the PU functions and the associated
accuracy in the GFEM solution. Moreover, we have shown that for certain
PU functions, the error could be extremely small. A technical result about the
quasi-interpolant, which depends on a combinatorial argument, was presented
in Section 5.

2 Preliminaries and Motivation

Let s := (s1, s2) be a multi-index, and in the following we will use the usual
multi-index notation. Specifically, we define |s| = s1 + s2, xs = xs1ys2 for
x := (x, y), s! = s1!s2!, s − t := (s1 − t1, s2 − t2) and for t := (t1, t2) another
multi-index, we write s ≤ t if and only if s1 ≤ t1 and s2 ≤ t2. Also we write

D(s)u :=
∂|s|

∂xs1ys2
.

We will now describe the finite dimensional subspace used in GFEM to ap-
proximate solutions of partial differential equations. Let Ω ⊂ R2 and for a given
parameter 0 < h < 1, and integer N = O(h−2), we consider the overlapping con-
vex sets ωj , called patches, where j = 1, 2....N . We define dj :=diam(ωj) ≤ 2h,
and require that the patches form an open cover of Ω, i.e.

Ω ⊂ Ω̃ :=
⋃

j

ωj .

We assume that the patches ωj are quasi-uniform, specifically that there exists
a constant C independent of h such that for all j, 0 < C < dj/h. Let

γ(ωi) := {j : ωj ∩ ωi 6= ∅} (1)

and for a given x ∈ Ω, we define

γ(x) := {j : x ∈ ωj}. (2)

We further assume that

max
x∈Ω

card(γ(x)) ≤ max
i

card(γ(ωi)) ≤ κ, (3)

where κ is independent of h. In other words, we require that each ωi intersects
at most κ of the other patches ωj .

Associated with the patches {ωj}, let {φj}N
j=1 be a family of functions defined

on Ω, having piecewise continuous first derivatives, satisfying

φj(x) = 0 for x ∈ Ω\ωj

N∑

j=1

φj(x) = 1 (4)
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|φj |W s∞(Ω) ≤ Ch−s, s = 0, 1.

It is clear from (4) that {φj} form a PU on Ω.
Next, for each ωj , we associate an mj-dimensional space of functions Vj ,

defined on ωj :
Vj := span{ξsj : s = 1, ..., mj}.

The functions ξsj in Vj are chosen carefully, so that they approximate the un-
known solution of the PDE efficiently in the patch ωj . The only requirement is
that Vj must contain constant functions.

We now define the GFEM space as

SGFEM :=
N∑

j=1

φjVj = span{φjξsj , j = 1, ..., N, s = 1, ..., mj}.

The main approximation result of SGFEM was derived in [6], [12], and is as
follows:

Theorem 2.1. Let u ∈ H1(Ω). There exists ξu ∈ SGFEM such that

||u− ξu||2H1(Ω) ≤ C

N∑

j=1

inf
ξ∈Vj

||u− ξ||2H1(ωj)
.

Remark 2.2. If u ∈ H1
0 (Ω), then for the index j such that ωj ∩ ∂Ω 6= ∅, the

space Vj does not contain constants. Moreover, the functions in such Vj ’s have
to satisfy a local Poincaré inequality, on which we do not elaborate in this paper.

Remark 2.3. It is clear from Theorem 2.1 that the global approximation prop-
erty of SGFEM is dictated by the local approximation property of the space Vj .
In other words, if u could be approximated accurately on ωj by a function in Vj

(i.e. locally), then u could be accurately approximated globally in the domain
Ω.

It is important to note that the approximation result of the theorem does
not incorporate the global approximation property of the PU, and therefore
may not provide precise information on the approximation. This phenomenon
can be easily seen when the shape functions are hat functions with respect to a
finite element triangulation of Ω, patches are finite element stars, and the local
approximation spaces Vj are polynomials of degree k. It is well known that
in this situation (see [3]), SGFEM is exactly the finite element space based on
piecewise polynomials of degree k + 1. From the approximation properties of
the finite element space, it is well known ([8], [7]) that if u ∈ Hk+2(Ω), there
exists a ξu ∈ SGFEM such that

||u− ξu||H1(Ω) ≤ Chk+1|u|Hk+2(Ω).
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But from Theorem 2.1, we get

||u− ξu||H1(Ω) ≤ C

N∑

j=1

inf
ξ∈Vj

||u− ξ||H1(ωj) ≤ Chk|u|Hk+1(Ω).

Thus for u ∈ Hk+2(Ω), the Theorem 2.1 does not give the right order of conver-
gence in this situation, as it does not incorporate the approximation property
of the PU hat functions. In this paper, we will address this issue by proving
an optimal convergence result that will incorporate the global approximation
property of the PU functions that are more general than piecewise polynomials.
We will prove this result when Vj ’s are the space of polynomials of degree k.

We will now discuss PU functions {φj} that have global approximation prop-
erties.

Definition 2.4. Let φj be given functions with support in ωj (for each j), and
suppose the points xj ∈ Ω are associated with ωj. We say φj are reproducing
of order l (or that they reproduce polynomials of total degree l) if:

N∑

j=1

xp
j φj(x) = xp for all |p| ≤ l, and x ∈ Ω, (5)

where p = (p1, p2) is a multi-index.

Remark 2.5. The points xj , called particles, defined above are usually inside
ωj but some of the particles could be outside Ω. Using l = 0 in (5), it is clear
that {φj} form a PU. It can be seen that the standard hat functions, defined
on a finite element triangulation of Ω, reproduce polynomials of degree 1, where
xj ’s are the finite element nodes.

A more general class of functions that reproduce polynomials of higher order
are the Reproducing Kernel Particle (RKP) functions, or the Moving Least-
Squares (MLS) particle functions, used in meshless methods. These functions
are of the form

φj(x) := wj(x)
l∑

|t|=0

(x− xj)tbt(x), (6)

where wj are given weight functions with support ω̄j and bt(x) are chosen such
that (5) is satisfied. We mention that, for each x ∈ Ω, bt(x) is computed as a
solution of a linear system. The construction of these functions can be found, for
example, in [9], [10], [11]. Moreover, in this paper we will assume that {φj(x)}
satisfy

|φj |W t∞(Ω) ≤ Ch−t for t = 0, 1, ...,M. (7)

Remark 2.6. M depends on the regularity of the approximated function and we
will address this issue later in the paper. It has been shown in [10] (Theorem 4.7)
that the condition (7) is satisfied by the RKP functions, provided the generating
weight functions wj are in CM (ωj).
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The functions φj from (6) have the following global approximation property :

Theorem 2.7 ([10],[14]). For a smooth v, there exists a linear combination Φ
of {φj} such that

||v − Φ||Ht(Ω) ≤ Chl+1−t, t = 0, ..., l + 1.

Next, for each ωj we define the local approximation space

Vj := Pk(ωj) = span{(x− xj)s : x ∈ ωj , |s| = 0...k}

where x := (x, y), s = (s1, s2) and (x − xj)s := (x − xj)s1(y − yj)s2 . In other
words, Pk(ωj), and therefore Vj , are the spaces of all polynomials of degree k
restricted to ωj . Then, as before, we define the space SGFEM by

SGFEM := span{φj(x)(x− xj)s : j = 1, ..., N, |s| = 0...k}. (8)

In the next section, we will show that there exists an ”interpolation” operator
Ih : W l

∞(Ω̃) → Sh(Ω) which preserves all polynomials of degree k + l on Ω, i.e.

Ih[p] := Ih[p(·)](x) = p(x) ∀p ∈ Pk+l.

3 Main approximation result

For x ∈ Ω we define the interpolation operator Ih : W k
∞(Ω̃) → SGFEM (Ω) by:

Ih[v(·)](x) :=
N∑

j=1




k∑

|m|=0

CmD(m)v(xj)(x− xj)m


 φj(x), (9)

where Cm := k!(k+l−|m|)!
m!(k−|m|)!(k+l)! and m := (m1,m2) is also a multi-index. Since

the inner term of the summation is a polynomial of degree k, it is clear from
the definition of the SGFEM that Ih[v(·)] ∈ SGFEM .

We further note that if l = 0 then the inner term in the summation is just
the Taylor polynomial of degree k of v(x) centered at xj . Since {φj(x)} form
a PU, it can be seen easily that Ih[v] preserves all polynomials of degree k.
To derive an approximation property of the space SGFEM that incorporates
the approximation property of {φj}, we will first show that Ih preserves all
polynomials of degree k + l on Ω, i.e.

Ih[p(·)](x) = p(x), ∀p ∈ Pk+l, x ∈ Ω.

Remark 3.1. Even though the interpolant defined in (9) is for a two-dimensional
domain, we can define an interpolant using the same formula for the one-
dimensional or three-dimensional cases.

In the following lemma, we derive an expression for Ih[v(·)](x) for v of the
form v = xi.
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Lemma 3.2. Let v(x) = xi where i := (i1, i2) is a multi-index with |i| =
0, ..., k + l. Then Ih can be written as

Ih[v(·)](x) :=
N∑

j=1

∑

0≤t≤i
|t|≤k

ctxtxi−t
j φj(x), (10)

where

ct :=
∑

t≤m≤i
|m|≤k

k!(k + l − |m|)!i!
(k − |m|)!(k + l)!(i−m)!(m− t)!t!

(−1)|m−t|. (11)

Proof. Let v(x) = xi, where i := (i1, i2) is a multi-index with |i| = 0, ..., k+l.
Then

D(m)v(xj) =

{
i!

(i−m)!x
i−m
j if m ≤ i;

0 otherwise.

Also from the binomial theorem,

(x− xj)m =

[
m1∑

t1=0

m1!xt1xm1−t1
j (−1)m1−t1

(m1 − t1)!t1!

] [
m2∑

t2=0

m2!yt2ym2−t2
j (−1)m2−t2

(m2 − t2)!t2!

]

=
∑

0≤t≤m

m!
(m− t)!t!

xtxm−t
j (−1)|m−t|, (12)

where the last summation is a double sum over 0 ≤ t1 ≤ m1, and 0 ≤ t2 ≤ m2.
Thus from (9) and (12), we can write the interpolant as:

Ih[v(·)](x) :=
N∑

j=1

fj(x)φj(x)

where fj(x) is a polynomial in x given by

fj(x) :=
k∑

|m|=0

k!(k + l − |m|)!
m!(k − |m|)!(k + l)!

D(m)v(xj)(x− xj)m

=
∑

0≤m≤i
|m|≤k


 k!(k + l − |m|)!

m!(k − |m|)!(k + l)!

∑

0≤t≤m

i!m!
(i−m)!(m− t)!t!

xtxi−t
j (−1)|m−t|




=
∑

0≤t≤i
|t|≤k

∑

t≤m≤i
|m|≤k

k!(k + l − |m|)!i!
(k − |m|)!(k + l)!(i−m)!(m− t)!t!

(−1)|m−t|xtxi−t
j

:=
∑

0≤t≤i
|t|≤k

ctxtxi−t
j .
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The third equality above was obtained by changing the order of summation
between m and i. This shows that (10) holds with the coefficients ct of xtxi−t

j

defined as in (11).
We will state some properties of the coefficients ct, namely that for a given

i such that 0 ≤ |i| ≤ k + l,

ct = 0 if |t| < |i| − l (i.e. l < |i| − |t| = |i− t|) (13)

and
∑

0≤t≤i
|t|≤k

ct = 1.

These properties guarantee that terms with xi−t, for l < |i− t|, do not appear
in the expansion (10), and that the sum of all coefficients is 1; we need this
property to show that Ih preserves all monomials of degree k + l. We will
illuminate this property in an example after the next lemma. Proving that (13)
holds for arbitrary values of k and l requires a (somewhat lengthy) combinatorial
argument. We have included a proof of (13) in the Appendix.

We show that Ih preserves all polynomials of degree k + l in the following
lemma:

Lemma 3.3. If v ∈ Pk+l and (13) holds, then Ih[v]|Ω = v|Ω, i.e. Ih preserves
all polynomials of total degree less than or equal to k + l inside Ω.

Proof. Let v(x) = xi. Then from Lemma 3.2,

Ih[v(·)](x) =
N∑

j=1

fj(x)φj(x)

=
N∑

j=1




∑

0≤t≤i
|t|≤k

ctx
txi−t

j


 φj(x),

where ct is given in (11). Using the properties of ct in (13), changing the order
of summation, and using the fact that {φj} reproduce all polynomials of degree
up to l, we further have:

Ih[v(·)](x) =
∑

0≤t≤i
|i|−l≤|t|≤k

ctxt
N∑

j=1

xi−t
j φj(x)

=
∑

0≤t≤i
|t|≤k

ctxtxi−t

= 1 · xi = xi

Therefore Ih[v(·)(x)] = v(x) for v(x) = xi, |i| ≤ k + l.
We will illustrate the result in Lemma 3.3 through the following example,

where we will also comment on the property (13):
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Example 3.4. Consider the case when k = 1 and l = 1. For clarity, we will
use the notation (x, y) instead of x for points in Ω ⊂ R2. Then the interpolant
is defined, as in (9), by:

Ih[v(·)](x, y) =
N∑

j=1

[
v(xj , yj) +

1
2
vx(xj , yj)(x− xj) +

1
2
vy(xj , yj)(y − yj)

]
φj(x, y).

We will check that this reproduces all polynomials of degree up to k + l = 2.
If v(x, y) = 1 (i = (0, 0)) then

Ih[v(·)](x, y) =
N∑

j=1

1 · φj(x, y) = 1.

Here fj(x, y) = 1 and ct = c(0,0) = 1.

If v(x, y) = x (i = (1, 0)) then

Ih[v(·)](x, y) =
N∑

j=1

(
xj +

1
2
· (x− xj)

)
φj(x, y) =

N∑

j=1

(
1
2
x +

1
2
xj

)
φj(x, y) =

=
1
2
x

N∑

j=1

φj(x, y) +
1
2

N∑

j=1

xjφj(x, y) =
x

2
+

x

2
= x.

Here fj(x, y) = 1
2x + 1

2xj and c(0,0) = 1
2 , c(1,0) = 1

2 .

If v(x, y) = y (i = (0, 1)) then similarly

Ih[v(·)](x, y) =
N∑

j=1

(
yj +

1
2
· (y − yj)

)
φj(x, y) =

y

2
+

y

2
= y,

with c(0,0) = 1
2 and c(0,1) = 1

2 . In all the cases so far, it is clear that the property
(13) is satisfied.

If v(x, y) = x2 (i = (2, 0)) then

Ih[v(·)](x, y) =
N∑

j=1

(
x2

j +
1
2
· 2xj(x− xj)

)
φj(x, y) =

N∑

j=1

xxjφj(x, y) = x2.

Here c(0,0) = 0, c(1,0) = 1, c(2,0) = 0, and note that conditions (13) are satisfied,
since

∑
ct = 1 and c(0,0) = 0 as 0 = |t| < |i| − l = 1.

If v(x, y) = xy (i = (1, 1)) then

Ih[v(·)](x, y) =
N∑

j=1

(
xjyj +

1
2
yj(x− xj) +

1
2
xj(y − yj)

)
φj(x, y) =

=
N∑

j=1

(
1
2
xyj +

1
2
xjy

)
φj(x, y) = xy,
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with c(0,0) = 0, c(1,0) = 1
2 , c(0,1) = 1

2 .

Finally, if v(x, y) = y2, then similarly to the case v(x, y) = x2 we have:

Ih[v(·)](x, y) =
N∑

j=1

(
y2

j +
1
2
· 2yj(y − yj)

)
φj(x, y) =

N∑

j=1

yyjφj(x, y) = y2,

and also c(0,0) = 0, c(0,1) = 1, c(0,2) = 0. Again, it is clear that the property (13)
is satisfied.

We will now prove the following approximation result, where we assume that
the PU functions {φj} satisfy (7) with M = k + l + 1 (see Remark 2.6).

Lemma 3.5. Let Bi := B(xi, 4h), i.e. a ball of radius 4h centered at xi. If
v ∈ W k+l+1

∞ (Bi), then for t = 0, ..., M with M = k + l + 1 (as in Remark 2.6),
and for any 1 ≤ i ≤ N we have

||v − Ih[v]||W t∞(ωi) ≤ Chk+l+1−t|v|W k+l+1
∞ (Bi). (14)

Note: Here, i and t are scalars and are not related to the multi-indices i and
t in the first part of the section.

Proof. The ball Bi is chosen large enough so that xj ∈ Bi for all j ∈ γ(ωi),
with γ(ωi) as in (1). Also note that for certain values of i, Bi may contain points
outside Ω, in which case it is necessary to extend v to an open ball B(0, R), of
radius R, where R is sufficiently large such that

Ω ⊂
N⋃

j=1

Bj ⊂ B(0, R− 6h). (15)

For the following argument we will assume that there exists an extension E[v]
that satisfies

E[v]|Ω = v and
||E[v]||W k+l+1

∞ (B(0,R)) ≤ C||v||W k+l+1
∞ (Ω) (16)

and we will identify E[v] with v. The existence of the extension E[v] is well
known provided Ω has a Lipschitz boundary, see [7], [13].

Let Qi be a (k+l) degree polynomial approximation of v on Bi which satisfies
the standard approximation estimate (see for example [7]):

||v −Qi||W t∞(ωi) ≤ ||v −Qi||W t∞(Bi) ≤ Chk+l+1−t|v|W k+l+1
∞ (Bi) (17)

For example, one could take Qi to be the Taylor polynomial of v centered at xi

and restricted to Bi. Then:

||v−Ih[v]||W t∞(ωi) ≤ ||Qi−Ih[Qi]||W t∞(ωi) + ||(v−Qi)−Ih[v−Qi]||W t∞(ωi) (18)
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Since Ih is invariant over polynomials of degree k + l, the first term on the right
hand side is zero. Also v − Qi is estimated by (17), so it remains to estimate
||Ih[v −Qi]||W t∞(Bi). Using the definition of Ih (see (9)), we write

Ih[v −Qi](x) =
N∑

j=1

k∑

|m|=0

[
CmD(m)(v −Qi)(xj)(x− xj)m

]
φj(x), (19)

where

Cm =
k!(k + l − |m|)!

m!(k − |m|)!(k + l)!
.

Since each x ∈ Ω belongs to at most κ of the sets ωj , then for a fixed x,
φj(x) = 0, for x /∈ γ(x). Furthermore, since xj ∈ Bi for all j ∈ γ(ωi), from the
second inequality of (17) with t = |m| we have :

|D(m)(v −Qi)(xj)| ≤ Chk+l+1−|m||v|W k+l+1
∞ (Bi) for j ∈ γ(ωi). (20)

Note that γ(ωi) and κ were defined in (1) and (3) respectively.
We will now consider several different cases. First, suppose t = 0. Then:

||Ih[v −Qi]||W 0∞(ωi) =

∣∣∣∣∣∣

∣∣∣∣∣∣

N∑

j=1

k∑

|m|=0

[
CmD(m)(v −Qi)(xj)(x− xj)m

]
φj(x)

∣∣∣∣∣∣

∣∣∣∣∣∣
W 0∞(ωi)

≤ κ




k∑

|m|=0

CmChk+l+1−|m||v|W k+l+1
∞ (Bi)h

|m|


 max

j∈γ(ωi)
||φj ||W 0∞(ωi)

≤ Chk+l+1|v|W k+l+1
∞ (Bi)

where we have used (20), (7), and the fact that |x−xj |m ≤ Ch|m|, which is true
by the quasiuniformity of the patches. Note here that the constant C depends
on k but not on h.

For t = 1 we have:
∣∣∣∣
∣∣∣∣

∂

∂x

(
Ih[v −Qi]

)∣∣∣∣
∣∣∣∣
W 0∞(ωi)

=

∣∣∣∣∣∣

∣∣∣∣∣∣

N∑

j=1

k∑

|m|=0

∂

∂x

[
CmD(m)(v −Qi)(xj)(x− xj)mφj(x)

]
∣∣∣∣∣∣

∣∣∣∣∣∣
W 0∞(ωi)

=

∣∣∣∣∣

∣∣∣∣∣
N∑

j=1

k∑

|m|=0

CmD(m)(v −Qi)(xj , yj)(y − yj)m2

[
m1(x− xj)m1−1φj(x, y) + (x− xj)m1

∂

∂x
φj(x, y)

] ∣∣∣∣∣

∣∣∣∣∣
W 0∞(ωi)

≤ κC

k∑

|m|=0

hk+l+1−|m||v|W k+l+1
∞ (Bi)h

m2

(
m1h

m1−1C + hm1Ch−1
)

≤ Chk+l|v|W k+l+1
∞ (Bi).

11



Here we have again used that |x− xj ||m| ≤ Ch|m| and condition (7). Similarly

∣∣∣∣
∣∣∣∣

∂

∂y

(
Ih[v −Qi]

)∣∣∣∣
∣∣∣∣
W 0∞(ωi)

=

∣∣∣∣∣∣

∣∣∣∣∣∣

N∑

j=1

k∑

|m|=0

∂

∂y

[
CmD(m)(v −Qi)(xj)(x− xj)mφj(x)

]
∣∣∣∣∣∣

∣∣∣∣∣∣
W 0∞(ωi)

=

∣∣∣∣∣

∣∣∣∣∣
N∑

j=1

k∑

|m|=0

CmD(m)(v −Qi)(xj , yj)(x− xj)m1

[
m2(y − yj)m2−1φj(x, y) + (y − yj)m2

∂

∂y
φj(x, y)

] ∣∣∣∣∣

∣∣∣∣∣
W 0∞(ωi)

≤ κC

k∑

|m|=0

hk+l+1−|m||v|W k+l+1
∞ (Bi)h

m1

(
m2h

m2−1C + hm2Ch−1
)

≤ Chk+l|v|W k+l+1
∞ (Bi).

Therefore we have,

|Ih[v −Qi]|W 1∞(ωi) ≤ Chk+l|v|W k+l+1
∞ (Bi).

We note that in general, by repeated differentiation, we have

|(x− xj)m1(y − yj)m2φj(x, y)|W t∞(ωi)
≤ Ch|m|−t,

where C may depend on k but is independent of h. Therefore, a similar argument
shows that also for t = 2, 3, ..., k + l + 1:

|Ih[v −Qi]|W t∞(ωi) ≤ Chk+l+1−t|v|W k+l+1
∞ (Bi).

Now we have

||Ih[v −Qi]||W t∞(ωi) = max
0≤t̄≤t

|Ih[v −Qi]|W t̄∞(ωi)

≤ max
0≤t̄≤t

Chk+l+1−t̄|v|W k+l+1
∞ (Bi)

≤ Chk+l+1−t|v|W k+l+1
∞ (Bi)

for h small enough. Thus, from (18), (17), and the above inequality, we get

||v−Ih[v]||W t∞(ωi) ≤ ||v−Qi||W t∞(ωi)+||Ih[v−Qi]||W t∞(ωi) ≤ Chk+l+1|v|W k+l+1
∞ (Bi),

which is the desired result.
Finally, we will extend the result to the whole domain Ω ⊂ R2.

Theorem 3.6. If v ∈ W k+l+1
∞ (Ω), then for t = 0, ..., k + l + 1 and 1 ≤ p ≤ ∞,

we have
inf

ξ∈SGF EM
||v − ξ||W t

p(Ω) ≤ Chk+l+1−t|v|W k+l+1
∞ (Ω), (21)

where C depends on k, l, κ, p, t and Ω, but is independent of v.

12



Proof. We recall that

Ω ⊂
N⋃

j=1

Bj ⊂ B(0, R),

where R was defined in (15). Therefore from Lemma 3.5 and (16), we have

||v − Ih[v]||W t∞(Ω) = max
1≤j≤N

||v − Ih[v]||W k+l+1
∞ (ωj)

≤ Chk+l+1−t max
1≤j≤N

|v|W k+l+1−t
∞ (Bj)

≤ Chk+l+1−t|v|W k+l+1−t
∞ (B(0,R))

≤ Chk+l+1−t|v|W k+l+1−t
∞ (Ω).

Thus,

inf
ξ∈SGF EM

||v − ξ||W t
p(Ω) ≤ ||v − Ih[v]||W t

p(Ω)

≤ C||v − Ih[v]||W t∞(Ω)

≤ Chk+l+1−t|v|W k+l+1−t
∞

(Ω),

which completes the proof.

4 Numerical Results

In this section, we will present numerical experiments to illuminate the result
of Theorem 3.6.

For a domain Ω := [0, 1]2, we will consider the following model problem:
{
−∆u = f in Ω
∂u
∂n = g on ∂Ω

, (22)

where f and g must satisfy the compatibility condition
∫

Ω

f dx +
∫

∂Ω

g ds = 0.

The variational formulation of (22) is:

Find u ∈ H1(Ω) such that

B(u, v) = F (v) for all v ∈ H1(Ω),
(23)

where
B(u, v) =

∫

Ω

∇u · ∇v dx and

F (v) =
∫

Ω

fv dx +
∫

∂Ω

gv ds.

13



In this section, we will consider f and g such that the exact solution of (23) is
u(x) := u(x, y) = ex+y = ex.

In the Generalized Finite Element Method (GFEM), which is a Galerkin
method, we seek uh ∈ SGFEM that satisfies:

B(uh, χ) = F (χ) for all χ ∈ SGFEM . (24)

Note that the solution uh is unique up to a constant, and unless additional
conditions are imposed, the stiffness matrix of the resulting linear system is not
invertible. We will discuss how to solve such linear systems later in the section.

The space SGFEM used in (24) is defined, as in (8), by

SGFEM := span{φi1,i2(x)(x− xi1,i2)
s : 0 ≤ i1, i2 ≤ N̄ , |s| = 0...k},

with the particle xi1,i2 := (hi1, hi2), and h = 1/N̄ , where N̄ is a positive
integer. Note that here we are enumerating the PU functions φj and particles xj

differently than before, using the double index 0 ≤ i1, i2 ≤ N̄ . A correspondence
can be established to the single index 1 ≤ j ≤ N by taking j = i1(N̄ +1)+i2 +1
and N = (N̄ + 1)2.

If φi1,i2 used in the construction of GFEM , reproduce the polynomials of
degree k, then from Theorem 3.6 it is clear that

|u− uh|H1(Ω) ≤ inf
ξ∈SGF EM

|u− ξ|H1(Ω) ≤ Chl+k|u|W k+l+1
∞

(Ω).

We will use the following two classes of PU functions in GFEM to compute uh,
namely RKP functions that reproduce polynomials of degree l = 0 and l = 1.
The PU functions are centered at the nodes xi1,i2 and are of the form given in
(6), with the double-index (i1, i2), (6) becomes

φi1,i2(x) := wi1,i2(x)
l∑

|t|=0

(x− xi1,i2)
tbt(x). (25)

Here we need to choose the weight functions wi1,i2 which generate the associated
PU function; these associated functions will be referred to as RKP PU functions.
One possible choice (see [4], [2] or [10]) is the conical weight function which, in
1 dimension, has the form:

w̄(x) =

{
[1− (x/R)2]L, |x| ≤ R

0, |x| > R,
(26)

where L is a parameter that controls the smoothness of the function (since
w̄ ∈ CL−1) and R is a parameter that determines the radius of support. For
the following computations, we have chosen R = 2, together with L = 2 and
L = 4. The function w̄(x) is scaled and translated to each node xi1,i2 and the
two-dimensional weight functions wi1,i2(x) with support on the patches ωi1,i2

are obtained by the taking the tensor products, i.e.

wi1,i2(x) := wi1,i2(x, y) = w̄

(
x− hi1

h

)
w̄

(
y − hi2

h

)
for 0 ≤ i1, i2,≤ N.

14



Note here that since the support of the function w̄(x) is |x| ≤ R, the support
of wi1,i2 is [hi1 − Rh, hi1 + Rh] × [hi2 − Rh, hi2 + Rh]. Since it can be seen
from the definition of φi1,i2 in (25) that the support of wi1,i2 is the same as the
support of φi1,i2 , we define the patches ωi1,i2 by

ωi1,i2 := supp(φi1,i2) = supp(wi1,i2) = [hi1−Rh, hi1+Rh]×[hi2−Rh, hi2+Rh].

We have seen before, in Theorem 2.7, that the φi1,i2 have global approximation
properties. In the following, we will examine the approximation properties of
φi1,i2 together with local approximation spaces of degree k. Note that for the
numerical results below, the integrals in the stiffness matrix and the load vector
(corresponding to (24)), were computed using a 16×16-point Gauss quadrature
rule.

Table 1: H1 seminorm of the error, R = 2, Conical Weight (L = 2)
|u− uh|H1(Ω)

h l = 1, k = 0 l = 1, k = 1 l = 2, k = 0 l = 2, k = 1
1/10 3.89277E-02 6.31748E-04 3.72158E-03 9.86775E-05
1/15 2.60315E-02 2.90724E-04 1.67433E-03 3.31752E-05
1/20 1.95546E-02 1.66261E-04 9.47428E-04 1.47741E-05
1/25 1.56594E-02 1.07456E-04 6.08492E-04 7.78774E-06
1/30 1.30586E-02 7.51050E-05 4.23548E-04 4.58800E-06
1/35 1.11988E-02 5.54321E-05 3.11693E-04 2.92393E-06
1/40 9.80275E-03 4.25852E-05 2.38935E-04 1.97547E-06
1/45 8.71622E-03 3.37365E-05 1.88969E-04 1.39619E-06

O(h) O(h2) O(h2) O(h3)

The values of |u− uh|H1(Ω), with φi1,i2 constructed using the conical weight
functions with L = 2, are shown in Table 1. Here we observe that |u−uh|H1(Ω)

are O(hk+l), where k = 0, 1 and l = 1, 2. This illuminates (21) of Theorem 3.6.
In particular, for l = 1 and k = 1 we get the same order of convergence, O(h2)
as for the case l = 2 and k = 0. However, we note that error is smaller for the
column where where l = 1 and k = 1.

Using linear (or higher order) local approximation spaces (i.e., increasing k)
may be more computationally efficient than using higher order RKP functions
(increasing l). This is because higher order RKP functions become increasingly
expensive to compute, as each point evaluation requires solving a (l+1)(l+2)

2 ×
(l+1)(l+2)

2 linear system. However, increasing k results in a larger global linear
system, as the dimensions of the stiffness matrix are N(k+1)(k+2)

2 × N(k+1)(k+2)
2 ,

where N is the number of patches.
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Table 2: H1 seminorm of the error, R = 2, Conical Weight (L = 4)
|u− uh|H1(Ω)

h l = 1, k = 0 l = 1, k = 1 l = 2, k = 0 l = 2, k = 1
1/10 2.24036E-02 3.94090E-04 5.63202E-03 2.44373E-05
1/15 1.51859E-02 1.84814E-04 2.58490E-03 8.61940E-06
1/20 1.14841E-02 1.06457E-04 1.47621E-03 4.19781E-06
1/25 9.23300E-03 6.89850E-05 9.53123E-04 2.40869E-06
1/30 7.71968E-03 4.83827E-05 6.65702E-04 1.52436E-06
1/35 6.63253E-03 3.57650E-05 4.91067E-04 1.03006E-06
1/40 5.81376E-03 2.75148E-05 3.77101E-04 7.29970E-07
1/45 5.17492E-03 2.18241E-05 2.98645E-04 5.36507E-07

O(h) O(h2) O(h2) O(h3)

Table 2 shows the values of |u−uh|H1(Ω), with φi1,i2 constructed using conical
weight functions with L = 4. It can be seen from (26) and Remark 2.6 that that
the PU functions generated by this choice of weight function are smoother than
for the case L = 2. We observe that, in general, the smoother PU functions
yield smaller values of the error |u − uh|H1(Ω) with enrichment. However, this
is not always the case for PU functions with no enrichment. Comparing the
columns corresponding to l = 2 and k = 0 of Tables 1 and 2, we note that the
semi-norm of the error is smaller for L = 2 than for L = 4.

We note that it is possible to determine a priori the relative approximation
qualities of the GFEM shape functions. This can be done by examining the
interpolation error for polynomials of degree k + l + 1 (since all polynomials of
degree k + l are reproduced exactly). Specifically, it was shown in [4], for the
case k = 0 with Ω ⊂ Rn, that for q > n

2 when n ≥ 2, and q = 0 for n = 1, we
have

sup
u∈Hl+2+q(Ω)

lim
h→0

||u− Ih[u]||2H1(Ω)

h2lQh(u)
= λ̄, (27)

where
Qh(u) = |u|2Hl+1(Ω) + h

∑

|α|=l+2

||Dαu||2Hq(Ω).

Here λ̄ is the largest eigenvalue of the matrix

Aij =
∫

I

1
α(i)!α(j)!

∇ξα(i) · ∇ξα(j) dx,

where α = α(i) is an enumeration of the multi-index α with |α(i)| = l + 1,
I = [−1/2, 1/2]n and ξα = xα−Ih[xα]. From (27), we can conclude that smaller
values of λ̄ imply better approximation quality of the GFEM interpolant.

The values of λ̄ for the GFEM spaces associated with a few choices of weight
functions are given in Table 3. Comparing rows 1 and 2, we can see that
the values of λ̄ are smaller for conical weight with L = 4 for all cases except
l = 2, k = 0. This indicates we expect better approximation properties from
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Conical weight PU functions with L = 4 except in the case l = 2, k = 0, which
is confirmed by the data in Tables 1 and 2 (columns 2,3 and 5). Note that
the formula in (27) was only proven for k = 0; an extension for k > 0 will be
addressed in a forthcoming paper.

Table 3: Values of λ̄ for R = 2
λ̄, R = 2

Weight function l = 1, k = 0 l = 1, k = 1 l = 2, k = 0 l = 2, k = 1
Conical wt. (L = 2) 7.5704E-03 2.3952E-04 1.1030E-02 5.9658E-04
Conical wt. (L = 4) 2.7163E-03 1.0160E-04 1.9558E-02 3.3528E-04

Cubic spline wt. 0.0000E+00 0.0000E+00 1.6881E-02 3.1032E-04

Another choice of a weight function we will consider is the cubic spline weight
function, which can be written as:

w̄(x) :=





2
3 − 4|x|2 + 4|x|3 for |x| ≤ 1

2
4
3 − 4|x|+ 4|x|2 − 4

3 |x|2 for 1
2 < |x| ≤ 1

0 for |x| > 1
. (28)

Note that this is a C2 function. The values of |u− uh|H1(Ω) are shown in Table
4.

Table 4: H1 seminorm of the error, R = 2, Cubic Spline Weight
|u− uh|H1(Ω)

h l = 1, k = 0 l = 1, k = 1 l = 2, k = 0 l = 2, k = 1
1/10 2.467210E-05 3.582517E-07 5.392829E-03 1.867585E-05
1/15 7.437905E-06 8.361688E-08 2.471138E-03 5.844202E-06
1/20 3.165037E-06 7.152803E-08 1.410205E-03 2.536195E-06
1/25 1.628884E-06 1.067760E-07 9.101249E-04 1.325887E-06
1/30 9.458857E-07 1.552849E-07 6.354979E-04 8.259678E-07
1/35 5.971220E-07 2.117555E-07 4.686974E-04 7.097027E-07
1/40 4.007614E-07 2.708601E-07 3.598728E-04 6.794109E-07
1/45 2.818711E-07 3.251667E-07 2.849709E-04 5.732386E-07

- - O(h2) O(h3)

Here it can be observed that the RKP functions with l = 1 achieve a higher
convergence rate than expected (close to O(h3) vs. the expected O(h) for k = 0,
up to the point where roundoff errors affect the convergence rate). This is due
to the quasi-reproducing property of the cubic spline weight function for R = 2
(see [2], [4]), on which we do not elaborate in this paper. This phenomenon does
not occur for the RKP functions with l = 2 or with R < 2. However, enriching
by linear functions improved the order of convergence by a power of h, up to
machine precision.

We have mentioned before that the stiffness matrix for the Neumann problem
(22) is not invertible and the resulting linear system will require special methods
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to solve. For the computations presented above we have used an algorithm
proposed in [15] and [3], which solves iteratively a perturbed system that is
ill-conditioned but not singular.

5 Appendix

In this section, we will prove that the coefficients ct, defined in (11), satisfy the
property (13) as mentioned in Section 3. We recall that for any multi-index
t = (t1, t2), ct is given by

ct :=
∑

t≤m≤i
|m|≤k

k!(k + l − |m|)!i!
(k − |m|)!(k + l)!(i−m)!(m− t)!t!

(−1)|m−t|.

where k, l are non-negative integers and 0 ≤ |i| ≤ k + l. Using the change of
variable m̄ = m− t, ct can be rewritten as:

ct :=
k!i!

(k + l)!t!

∑

0≤m̄≤i−t
|m̄|≤k−|t|

(k + l − |m̄ + t|)!
(k − |m̄ + t|)!(i− m̄− t)!(m̄)!

(−1)|m̄|.

Note that ct depends on i, k, and l, and therefore in this section, we will write
ct;i,k,l for ct; moreover the index of summation will be m instead of m̄ as in the
above expression.

We will prove the property (13) for the one-dimensional case. This will be
helpful in understanding the arguments in the two-dimensional proof. We note
that in one dimension, the multi-indices t, i, and m in the definition of ct are
replaced by non-negative integers t, i and m, respectively.

Lemma 5.1. Let k and l be given and i be such that 0 ≤ i ≤ k + l. For any
non-negative integer t, let

ct;i,k,l =

{
k!·i!

(k+l)!·t!
∑min(k−t,i−t)

m=0
(k+l−m−t)!

(k−m−t)!(i−m−t)!m! · (−1)m, for 0 ≤ t ≤ i

0 for t > i.

(29)
Note that it is possible that ct;i,k,l = 0 even when 0 ≤ t ≤ i, for example when
t > k.

Then the following hold:
i) For 0 ≤ i ≤ k + l,

ct;i,k,l+1 =
k + l + 1− t

k + l + 1
ct;i,k,l +

t + 1
k + l + 1

ct+1;i,k,l (30)

ii) If t < i− l then
ct;i,k,l = 0 (31)

iii) For 0 ≤ i ≤ k + l,
i∑

t=0

ct;i,k,l = 1. (32)
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Note that (31) and (32) are the 1D equivalent of (13).
Proof. i) Let M :=min(k − t, i− t). Then

ct;i,k,l+1 =
k!i!

(k + l + 1)!t!

M∑
m=0

(k + l + 1−m− t)!
(k −m− t)!(i−m− t)!m!

(−1)m

=
k!i!

(k + l + 1)(k + l)!t!

M∑
m=0

[(k + l + 1− t)−m](k + l −m− t)!(−1)m

(k −m− t)!(i−m− t)!m!

=
k + l + 1− t

k + l + 1
ct;i,k,l − k!i!

(k + l + 1)!t!

M∑
m=1

(k + l −m− t)!(−1)m

(k −m− t)!(i−m− t)!(m− 1)!

Next, using the reindexing m̃ := m− 1 in the above equality, we have:

ct;i,k,l+1 =
k + l + 1− t

k + l + 1
ct;i,k,l

− t + 1
k + l + 1

k!i!
(k + l)!(t + 1)!

M−1∑

m̃=0

(k + l − m̃− 1− t)!(−1)m̃+1

(k − m̃− 1− t)!(i− m̃− 1− t)!m̃!

=
k + l + 1− t

k + l + 1
ct;i,k,l +

t + 1
k + l + 1

ct+1;i,k,l,

where the second term of the last line was obtained using the definition of
ct+1;i,k,l (see (29)). Note that in some cases M may be negative, in which case
from the definition (29), ct;i,k,l+1 = ct;i,k,l = ct+1;i,k,l = 0, and therefore (30)
holds trivially.

ii) First we consider the case i = k + l. We have:

ct;k+l,k,l =
k!(k + l)!
(k + l)!t!

min(k−t,k+l−t)∑
m=0

(k + l −m− t)!
(k −m− t)!(k + l −m− t)!m!

(−1)m

=
k!
t!

k−t∑
m=0

(−1)m

(k −m− t)!m!

= δkt, (33)

where δkt is the Kronecker delta. The last equality is obtained from the binomial
identity

p∑

`=0

p!
(p− `)!`!

(−1)` =

{
0 for p > 0
1 for p = 0

, (34)

with ` = m, p = k−t, and dividing both sides by (k−t)!. Therefore ct;k+l,k,l = 0
for t < k = i − l, which is the desired result (31). Also note that if k = t then
ct;k+l,k,l = ck;k+l,k,l = 1, which we will use in a later part of the proof.

Next, suppose i < k + l, and we prove (31) by induction on l. Let l = 0; we
first show that ct;i,k,0 = 0 for t < i − l = i. From the definition of ct;i,k,l with
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l = 0 (see (29)) we have

ct;i,k,0 =
i!
t!

min(k−t,i−t)∑
m=0

1
(i−m− t)!m!

(−1)m.

Since i < k + l = k, it follows that min(k − t, i− t) = i− t, and therefore

ct;i,k,0 =
i!
t!

i−t∑
m=0

1
(i−m− t)!m!

(−1)m (35)

= δti. (36)

Here, we have used (34) with ` = m, p = i − t and have divided both sides by
(i− t)!. Hence we conclude that (31) is true for l = 0.

Next suppose (31) is true for some l ≥ 0, in other words

ct;i,k,l = 0 for t < i− l. (37)

We will show that ct;i,k,l+1 = 0 for t < i − l − 1. Using t + 1 in the induction
hypothesis (37), we have

ct+1;i,k,l = 0 for t < i− l − 1.

Hence from (37) and (30),

ct;i,k,l+1 = 0 for t < i− l − 1.

Thus we have proven that (31) is true for l + 1, which completes the induction
argument.

iii) Again, we first consider the case i = k + l. Previously, we have shown in
(33) that ct;k+l,k,l = δkt. Therefore

k+l∑
t=0

ct;k+l,k,l =
k+l∑
t=0

δkt = 1,

and hence (32) holds for i = k + l.
For i < k+ l we again use induction on l. The case l = 0 follows immediately

from (36), since
i∑

t=0

ct,i,k,0 =
i∑

t=0

δti = 1.

Next suppose (32), i.e.
∑i

t=0 ct;i,k,l = 1, is true for some l ≥ 0. We will
show that

∑i
t=0 ct;i,k,l+1 = 1. Note that

i∑
t=0

ct;i,k,l+1 =
i−1∑
t=0

ct;i,k,l+1 + ci;i,k,l+1
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and therefore from (30),

i∑
t=0

ct;i,k,l+1 =
i−1∑
t=0

[
(k + l + 1)− t

k + l + 1
ct;i,k,l +

t + 1
k + l + 1

ct+1;i,k,l

]
+ ci;i,k,l+1

=
i−1∑
t=0

ct;i,k,l −
i−1∑
t=0

t

k + l + 1
ct;i,k,l +

i−1∑
t=0

t + 1
k + l + 1

ct+1;i,k,l + ci;i,k,l+1

Now from the induction hypothesis (32), it follows that
∑i−1

t=0 ct;i,k,l = 1−ci;i,k,l.
Using this and the re-indexing t̄ := t+1 in the last summation term in the above
equality, we have

i∑
t=0

ct;i,k,l+1 = 1−ci;i,k,l−
i−1∑
t=0

t

k + l + 1
ct;i,k,l +

i∑

t̄=1

t̄

k + l + 1
ct̄;i,k,l +ci;i,k,l+1

= 1− ci;i,k,l −
i−1∑
t=1

t

k + l + 1
ct;i,k,l

+
i−1∑

t̄=1

t̄

k + l + 1
ct̄;i,k,l +

i

k + l + 1
ci;i,k,l + ci;i,k,l+1

= 1− ci;i,k,l +
i

k + l + 1
ci;i,k,l + ci;i,k,l+1. (38)

Now from (30), we have

ci;i,k,l+1 =
k + l + 1− i

k + l + 1
ci;i,k,l +

i + 1
k + l + 1

ci+1;i,k,l

=
k + l + 1− i

k + l + 1
ci;i,k,l,

since ci+1;i,k,l = 0 from the definition (29). Therefore from (38), we get

i∑
t=0

ct;i,k,l+1 = 1 +
i− k − l − 1

k + l + 1
ci;i,k,l +

k + l + 1− i

k + l + 1
ci;i,k,l

= 1.

This establishes (32) by the induction argument.

Remark 5.2. We recall that for a given k and l, we first proved (31) and (32)
for i = k + l directly. We then used an induction argument to prove (31) and
(32) for i < k + l. We note that we cannot use induction on l (as we have used
in the case i < k + l) to prove (31) and (32) for i = k + l; the proof employs
the recursion relation (30) with i = k + l + 1, but (30) is only true for i ≤ k + l.
This idea of separating the case i = k + l from the case i < k + l in proving (31)
and (32) will help us understand a similar result in two dimensions.
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We will now prove the property (13) in two dimensions.

Lemma 5.3. Let k and l be given non-negative integers, and i be such that
0 ≤ |i| ≤ k + l. For any multi-index t := (t1, t2) with non-negative components,
let

M := Mt := M(t1,t2) := {m : 0 ≤ m ≤ i− t, and |m| ≤ k − |t|},

where M depends on t. Next we define define

ct;i,k,l =





k! i!
(k+l)! t!

∑
m∈M

(k+l−|m+t|)!
(k−|m+t|)!(i−m−t)!m! (−1)|m| for 0 ≤ t ≤ i

0 otherwise .
(39)

Note that it is possible that ct;i,k,l = 0 even when 0 ≤ t ≤ i, for example when
M is the empty set.

We also assume the following:
a) If |i| = k + l, then for all t such that |t| < k, we have ct;i,k,l = 0.
b) If |i| = k + l, then ∑

0≤t≤i

ct;i,k,l = 1.

Then the following hold:
i) For 0 ≤ |i| ≤ k + l,

ct;i,k,l+1 =
k + l + 1− |t|

k + l + 1
ct;i,k,l+

t1 + 1
k + l + 1

c(t1+1,t2);i,k,l+
t2 + 1

k + l + 1
c(t1,t2+1);i,k,l.

(40)
We note that the assumptions a) and b) for |i| = k+ l stated above is not needed
for this part.

ii) If |t| < |i| − l then
ct;i,k,l = 0 (41)

iii) For 0 ≤ |i| ≤ k + l, ∑

0≤t≤i

ct;i,k,l = 1. (42)

Remark 5.4. The assumptions a) and b) can be easily verified for particular
values of k and l. Also note that (41) and (42) are precisely the properties
stated in (13). Here we do not write the constraint |t| ≤ k on the index of
summation t in (42) (compare with (13)), since the set Mt is empty for |t| > k,
and consequently ct;i,k,l = 0 for |t| > k.
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Proof of Lemma 5.3. Using the definition of ct;i,k,l in (39),

ct;i,k,l+1 =
k!i!

(k + l + 1)! t!

∑

m∈M

(k + l + 1− |m + t|)!
(k − |m + t|)!(i−m− t)!m!

(−1)|m|

=
k!i!

(k + l + 1)(k + l)!t!

∑

m∈M

[(k + l + 1− |t|)− |m|](k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!m!

=
k + l + 1− |t|

k + l + 1
ct;i,k,l − k!i!

(k + l + 1)!t!

∑

m∈M

|m|(k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!m!
.

(43)

The last term of (43) can be written as:

k!i!
(k + l + 1)!t!

∑

m∈M

(m1 + m2)(k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!m1!m2!

=
k!i!

(k + l + 1)!t!




∑

m∈M
m1 6=0

(k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!(m1 − 1)!m2!

+
∑

m∈M
m2 6=0

(k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!m1!(m2 − 1)!


 . (44)

Here the terms with m1 = 0 and m2 = 0 can be discarded, since for example,
m1/m1! = 0/0! = 0, so these terms do not contribute to the sum.

We will now examine each of the summation terms in the right hand side of
(44) separately. We will use a re-indexing which shifts the indices m1 and m2

down by substituting

m̄1 := m1 − 1 and m̄2 = m2 − 1.

We next define the set

M̄1 := {m̄ := (m̄1,m2) : 0 ≤ m̄1 ≤ i1 − t1 − 1, 0 ≤ m2 ≤ i2 − t2,

0 ≤ m̄1 + m2 ≤ k − t1 − t2 − 1}

and

M̄2 := { ¯̄m := (m1, m̄2) : 0 ≤ m1 ≤ i1 − t1, 0 ≤ m2 ≤ i2 − t2 − 1,

0 ≤ m1 + m̄2 ≤ k − t1 − t2 − 1}.

It is easy to check that

M̄1 = M(t1+1,t2) and M̄2 = M(t1,t2+1).
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Now, with the notation i := (i1, i2) and using the definition of c(t1+1,t2);i,k,l (see
(39), where the sum in this case is over the set M(t1+1,t2)), the first summation
term of the right hand side of (44) can be written as:

∑

m∈M
m1 6=0

(k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!(m1 − 1)!m2!
=

=
∑

m̄∈M̄1

(k + l − m̄1 − 1−m2 − |t|)!(−1)m̄1+1+m2

(k − m̄1 − 1−m2 − |t|)!(i1 − m̄1 − 1− t1)!(i2 −m2 − t2)!m̄1!m2!

=
∑

m∈M̄1

(k + l − |m| − t1 − 1− t2)!(−1)|m|

(k − |m| − t1 − 1− t2|)!(i1 −m1 − t1 − 1)!(i2 −m2 − t2)!m!
,

= − (k + l)!(t1 + 1)!t2!
k!i!

c(t1+1,t2);i,k,l (45)

Next, from the definition of c(t1,t2+1);i,k,l (see (39), where the sum in this case
is over the set M(t1,t2+1)), the second summation term in the right hand side
of (44) can similarly be written as:

∑

m∈M
m2 6=0

(k + l − |m + t|)!(−1)|m|

(k − |m + t|)!(i−m− t)!m1!(m2 − 1)!

= − (k + l)!t1!(t2 + 1)!
k!i!

c(t1,t2+1);i,k,l. (46)

Finally, from (43) through (46), it follows that

ct;i,k,l+1 =
k + l + 1− |t|

k + l + 1
ct;i,k,l+

t1 + 1
k + l + 1

c(t1+1,t2);i,k,l+
t2 + 1

k + l + 1
c(t1,t2+1);i,k,l.

ii) The result (41) has been assumed for |i| = k + l in a). For |i| < k + l, the
proof is by induction on l. Suppose l = 0. Then from (39)

ct;i,k,0 =
i!
t!

∑

m∈Mt

1
(i−m− t)!m!

(−1)|m|.

Since |i| < k + l = k, the condition m ∈ Mt is equivalent to 0 ≤ m ≤ i− t (in
other words, the condition |m| < k − |t| is automatically satisfied). Then

ct;i,k,0 =
i!
t!

∑

0≤m≤i−t

1
(i−m− t)!m!

(−1)|m|

=
i!
t!

∑

0≤m≤i−t

(−1)m1+m2

(i1 − t1 −m1)!(i2 − t2 −m2)!m1!m2!

=
i!
t!

(
i1−t1∑
m1=0

(−1)m1

(i1 − t1 −m1)!m1!

)(
i2−t2∑
m2=0

(−1)m2

(i2 − t2 −m2)!m2!

)
. (47)
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Using the binomial identity

(1 + x)n =
n∑

j=0

n!
(n− j)!j!

xj

with n = i2 − t2, j = m2, x = −1 it follows that

i2−t2∑
m2=0

(−1)m2

(i2 − t2 −m2)!m2!
=

{
0 if t2 < i2,
1 if t2 = i2

.

Similarly,
i1−t1∑
m1=0

(−1)m1

(i1 − t1 −m1)!m1!
=

{
0 if t1 < i1,
1 if t1 = i1

.

Thus we conclude from (47) that:

ct;i,k,0 =

{
0 if t1 < i1 or t2 < i2,
1 if t1 = i1 and t2 = i2

. (48)

This is equivalent to stating that ct;i,k,0 = 0 if |t| < |i|, which is precisely what
we wanted to prove for the initial step l = 0.

Next suppose the proposition is true for l ≥ 0 and we will show that it is
also true for l + 1. By the induction hypothesis,

ct;i,k,l = 0 for |t| < |i| − l.

Therefore for t = (t1 + 1, t2) and t = (t1, t2 + 1), we have

c(t1+1,t2);i,k,l = 0 and c(t1,t2+1);i,k,l = 0 for |t| < |i| − l − 1.

Hence, from (40),
ct,i,k,l+1 = 0 for |t| < |i| − l − 1.

Thus we have proven that (41) is true for l + 1, which completes the induction
argument.

iii) The result (42) has been assumed for i = k + l in b). For |i| < k + l, we
will again use induction on l. When l = 0, we have seen in (48) that ct;i,k,0 = 0
for t 6= i and ct;i,k,0 = 1 for t = i. Therefore

∑
0≤t≤i ct;i,k,0 = 1 as desired.

Next suppose (42) is true for some l ≥ 0. We want to show
∑

0≤t≤i ct;i,k,l+1 =
1. Now using (40), we get

∑

0≤t≤i

ct;i,k,l+1 =
∑

0≤t≤i

(k + l + 1)− |t|
k + l + 1

ct;i,k,l+

+
i1∑

t1=0

i2∑
t2=0

t1 + 1
k + l + 1

c(t1+1,t2);i,k,l +
i1∑

t1=0

i2∑
t2=0

t2 + 1
k + l + 1

c(t1,t2+1);i,k,l.
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Now with the re-indexing:

t̄1 = t1 + 1 (for the middle term) and t̄2 = t2 + 1 (for the last term)

we get

∑

0≤t≤i

ct;i,k,l+1 =
i1∑

t1=0

i2∑
t2=0

(k + l + 1)− t1 − t2
k + l + 1

c(t1,t2);i,k,l+

+
i1+1∑

t̄1=1

i2∑
t2=0

t̄1
k + l + 1

c(t̄1,t2);i,k,l +
i1∑

t1=0

i2+1∑

t̄2=1

t̄2
k + l + 1

c(t1,t̄2);j,k,l

=
i1∑

t1=0

i2∑
t2=0

(k + l + 1)− t1 − t2
k + l + 1

c(t1,t2);i,k,l+

+
i1∑

t̄1=1

i2∑
t2=0

t̄1
k + l + 1

c(t̄1,t2);i,k,l +
i1∑

t1=0

i2∑

t̄2=1

t̄2
k + l + 1

c(t1,t̄2);i,k,l

+
i2∑

t2=0

i1 + 1
k + l + 1

c(i1+1,t2);(i1,i2),k,l +
i1∑

t1=0

i2 + 1
k + l + 1

c(t1,i2+1);(i1,i2),k,l.

=
i1∑

t1=0

i2∑
t2=0

c(t1,t2);i,k,l −
i1∑

t1=0

i2∑
t2=0

t1
k + l + 1

c(t1,t2);i,k,l −
i1∑

t1=0

i2∑
t2=0

t2
k + l + 1

c(t1,t2);i,k,l

+
i1∑

t̄1=1

i2∑
t2=0

t̄1
k + l + 1

c(t̄1,t2);i,k,l +
i1∑

t1=0

i2∑

t̄2=1

t̄2
k + l + 1

c(t1,t̄2);i,k,l

+
i2∑

t2=0

i1 + 1
k + l + 1

c(i1+1,t2);(i1,i2),k,l +
i1∑

t1=0

i2 + 1
k + l + 1

c(t1,i2+1);(i1,i2),k,l

=
∑

0≤t≤i

ct;i,k,l +
i2∑

t2=0

i1 + 1
k + l + 1

ci1+1,t2;(i1,i2),k,l +
i1∑

t1=0

i2 + 1
k + l + 1

ct1,i2+1;(i1,i2),k,l

(49)

Now from induction hypothesis,
∑

0≤t≤i ct;i,k,l = 1. Also from the defini-
tion of ct (see (39)), we have ci1+1,t2;(i1,i2),k,l = 0 since i1 + 1 > i1, and
ct1,i2+1;(i1,i2),k,l = 0 since i2 + 1 > i2. Hence from (49), we conclude that

∑

0≤t≤i

ct;i,k,l+1 = 1,

which completes the induction argument to prove (42).
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