Effect of numerical integration on meshless methods

Ivo Babuška a,1, Uday Banerjee b,2, John E. Osborn c,1, Qinghui Zhang d,2

a Institute for Computational Engineering and Sciences, ACE 6.412, University of Texas at Austin, Austin, TX 78712, United States
b Department of Mathematics, 215 Carnegie, Syracuse University, Syracuse, NY 13244, United States
c Department of Mathematics, University of Maryland, College Park, MD 20742, United States
d Department of Scientific Computing and Computer Applications, Sun Yat-Sen University, Guangzhou 510275, PR China

ARTICLE INFO

Article history:
Received 1 December 2008
Accepted 17 April 2009
Available online xxxx

Keywords:
Galerkin methods
Meshless methods
Quadrature
Numerical integration
Error estimates

ABSTRACT

In this paper, we present the effect of numerical integration on meshless methods with shape functions that reproduce polynomials of degree \(k \geq 1 \). The meshless method was used on a second order Neumann problem and we derived an estimate for the energy norm of the error between the exact solution and the approximate solution from the meshless method under the presence of numerical integration. This estimate was obtained under the assumption that the numerical integration scheme satisfied a form of Green’s formula. We also indicated how to obtain numerical integration schemes satisfying this property.

1. Introduction

Meshless methods (MM) were developed in early 1990s for numerically solving partial differential equations (PDE). This initiative was stimulated by the difficulties in mesh generation when available methods, e.g., the Finite Element Method (FEM), were used to solve various complex problems in engineering. It was recognized from the very beginning of the development of MM that numerical integration posed bigger challenge in this method than the FEM, and the issue was discussed in various engineering papers, e.g., [5,8,9,11,12,10,14–16]. In FEM, the shape functions are piecewise polynomials of degree \(k \geq 1 \) and a careful mathematical analysis of the effect of numerical integration in FEM was published 30 years ago in [13]. The analysis required that the numerical integration in FEM, when applied to PDEs with constant coefficients, must evaluate the stiffness matrix exactly. This is easily achieved since the integrands of the elements of the stiffness matrix of FEM are polynomials of degree \(2k - 2 \). The analysis also exploited the fact that \(\ell \)th order derivatives of the shape functions vanish locally (on each triangle) for \(\ell \geq k + 1 \). In contrast, the shape functions used in MM are not piecewise polynomials and their \(\ell \)th order derivatives grow with \(\ell \). Moreover, the stiffness matrix cannot be evaluated exactly for PDEs with constant coefficients. Thus the shape functions used in MM lack the two most important features of the shape functions of FEM. Numerical integration in MM is a bigger challenge primarily because of the lack of these features.

Many interesting ideas on the use of numerical integration in MM were presented in the engineering papers mentioned above, but to the best of our knowledge, a careful mathematical analysis of the effect of numerical integration in MM was first reported in [4]. It is shown in this paper that the error in the approximate solution, obtained from MM with standard numerical quadrature, does not converge. It is then shown that if the stiffness matrix satisfies a condition referred to as the zero row sum condition, the energy norm of the error in the approximate solution is \(O(h + \eta) \), where \(h \) is the standard discretization parameter related to the diameters of the supports of the shape functions and \(\eta \) is the parameter indicating the accuracy of the underlying numerical quadrature. Thus MM, with numerical integration, does not yield optimal order of convergence unless \(\eta = O(h) \). However, the analysis in [4] uses an assumption on the approximation space that is difficult to verify. We further note that the analysis is restricted to MMs with shape functions that reproduced polynomials of degree \(k = 1 \); it is not clear that the analysis can be extended to \(k > 1 \).

In this paper, we present a mathematical analysis of the effect of numerical integration on MM, where the quadrature is required to satisfy certain conditions that are different from those required in [4]. We also indicate how to obtain numerical quadrature schemes satisfying these conditions. Moreover, in contrast to [4], the
analysis presented in this paper is valid for $k \geq 1$. We have shown in this paper that the energy norm of the error in the approximate solution obtained from MM with numerical quadrature (satisfying certain conditions) is $O(h^k)$, where h is a parameter related to the accuracy of the numerical quadrature and k is the standard discretization parameter. Thus MM does not yield optimal order of convergence for $\eta=O(h)$. Certainly if $\eta=O(h)$, we have the optimal order of convergence. It is important to note that the parameter η (see (3.10)) associated with the particular numerical integration used in the FEM, namely the Gauss rule, is $O(h)$. We mention that the numerical integration used in this paper yields a non-symmetric stiffness matrix. But this does not pose a serious problem since non-symmetric linear systems could be solved efficiently by iterative methods.

We address the application of MM on a second order Neumann boundary value problem in this paper. The outline of this paper is as follows: In Section 2, we present the preliminaries, a variational formulation based on Lagrange multipliers and the associated MM. In Section 3, we present a numerical quadrature scheme, together with associated assumptions on the scheme. We present our main results in Section 4, which are Theorems 4.1 and 4.2. In Section 5, we present a procedure that indicates how to obtain quadrature schemes satisfying an assumption given in Section 3. We also present numerical experiments in this section to illustrate how to obtain our main results presented in Section 4. Some of these numerical experiments also indicate the necessity of one of the main assumptions on the quadrature given in Section 3. We provide a few remarks and a brief summary of the paper in Section 6.

2. Preliminaries and meshless method

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain with Lipschitz continuous boundary $\Gamma = \partial \Omega$. We denote the usual Sobolev space by $W^{m,p}(\Omega)$ with the norm and semi-norm, $\|u\|_{W^{m,p}(\Omega)}$ and $\|u\|_{W^{m,p}_0(\Omega)}$, respectively. We will consider only $p = 2$ and ∞ in this paper; $W^{m,2}(\Omega)$ will be denoted by $H^m(\Omega)$. Moreover, $\|u\|_{L^2(\Omega)}$, $\|u\|_{L^2(\Gamma)}$, and $\|\nabla u\|_{L^2(\Gamma)}$ will denote the usual norms on $L_2(\Omega)$, $L_2(\Omega)$, $L_2(\Gamma)$, and $L_2(\Gamma)$, respectively.

Exact problem:

We consider the standard Neumann problem

$$-\Delta u = f \quad \text{in } \Omega,$$

$$\frac{\partial u}{\partial n} = g, \quad \text{on } \Gamma = \partial \Omega,$$

where $\frac{\partial}{\partial n}$ is the unit outward normal derivative to Γ and $f \in L_2(\Omega)$, $g \in L_2(\Gamma)$ satisfy the compatibility condition

$$\int_{\Omega} f(x) \, dx + \int_{\Gamma} g(s) \, ds = 0.$$

The associated variational formulation of (2.1) is given by

$$\text{Find } u \in H^1(\Omega) \quad \text{satisfying},$$

$$B(u, v) = L(v), \quad \forall v \in H^1(\Omega),$$

where

$$B(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx \quad \text{and} \quad L(v) = \int_{\Omega} f v \, dx + \int_{\Gamma} g v \, ds.$$

The compatibility condition (2.2) can be written as $L(1) = 0$. It is well known that the problem (2.3) has a unique solution up to a constant. A standard way of specifying a unique solution is to consider a linear functional $\Phi : L_2(\Omega) \rightarrow \mathbb{R}$ with $\Phi(1) > 0$ and seek the unique solution u satisfying $\Phi(u) = 0$. The functional $\Phi(u)$, for example, could be chosen to be $\Phi(u) = C \int_{\Omega} u \, dx$ or $\Phi(u) = \int_{\Omega} \phi(x) u \, dx$, where $\phi(x)$ is smooth. Let $H_\Phi = \{(v, \mu) \in H^1(\Omega) \times \mathbb{R} : \|(v, \mu)\|_{H_\Phi}^2 = \|v\|_{H^1(\Omega)}^2 + \|\Phi(v)\|^2 + \mu^2 < \infty\}$. H_Φ is a Hilbert space and it is easy to show that there exist positive constants C_1, C_2, such that

$$C_1 \|(v, \mu)\|_{H_\Phi}^2 \leq \|v\|_{H^1(\Omega)}^2 + \mu^2 \leq C_2 \|(v, \mu)\|_{H_\Phi}^2, \quad \forall (v, \mu) \in H_\Phi.$$

(2.4)

We consider an alternate variational problem given by

$$\text{Find } (u, \lambda) \in H_\Phi \quad \text{satisfying},$$

$$B(u, v) + \lambda \Phi(v) = L(v), \quad \forall (v, \mu) \in H_\Phi,$$

where

$$B(u, v) = B(u, v) + \lambda \Phi(u) + \mu \Phi(u),$$

and $B(u, v)$ and $L(v)$ are defined above.

Remark 2.1. We note that the problem (2.5) can equivalently be written as the system

$$B(u, v) + \lambda \Phi(v) = L(v), \quad \forall v \in H^1(\Omega),$$

$$\mu \Phi(u) = 0, \quad \forall \mu \in \mathbb{R}.$$

The second equation gives the constraint $\Phi(u) = 0$. Moreover, it is well known that the first equation is the Euler–Lagrange equation for the constrained extremal problem

$$\min_{\mathbb{R}^\Omega} \int_{\Omega} B(v, v) - L(v), \lambda,$$

where $J(v) = \frac{1}{2} B(v, v) - L(v), \lambda$ is the Lagrange multiplier and the problem (2.5) is known as the variational problem based on Lagrange multiplier.

To establish that the problem (2.5) has a unique solution, we present the following result.

Lemma 2.1

(a) There is a constant $C > 0$ such that

$$\|\Phi(u, \lambda, v, \mu)\|_{H_\Phi} \leq C \|(u, \lambda)\|_{H_\Phi} \|(v, \mu)\|_{H_\Phi}, \quad \forall (u, \lambda, (v, \mu) \in H_\Phi.$$

(2.6)

(b) There exists $C > 0$ such that

$$C < \inf_{(u, \lambda) \in H_\Phi} \sup_{(v, \mu) \in H_\Phi} \frac{\|\Phi(u, \lambda, v, \mu)\|_{H_\Phi}}{\|(u, \lambda)\|_{H_\Phi} \|(v, \mu)\|_{H_\Phi}}.$$

(2.7)

(c) For any $(v, \mu) \in H_\Phi$ satisfying $\|(v, \mu)\|_{H_\Phi} \neq 0$, $0 < \sup_{(u, \lambda) \in H_\Phi} \|\Phi(u, \lambda, v, \mu)\|_{H_\Phi}$.

Proof

(a) This follows directly from the Cauchy-Schwartz inequality.

(b) We show that for a given $(u, \lambda) \in H_\Phi$, we can choose $(v, \mu) \in H_\Phi$ such that

$$\|\Phi(u, \lambda, v, \mu)\|_{H_\Phi} \geq C \|(u, \lambda)\|_{H_\Phi}^2,$$

and

$$\|(v, \mu)\|_{H_\Phi} \leq C \|(u, \lambda)\|_{H_\Phi}.$$

We choose $v = u + \lambda$ and $\mu = -\lambda + \Phi(u)$. Then

$$\Phi(u, \lambda, v, \mu) = B(u, v) + \lambda \Phi(v) + \mu \Phi(u)$$

$$= B(u, u + \lambda + \lambda \Phi(u + \lambda) + [-\lambda + \Phi(u)] \Phi(u)$$

$$= |u|^2 \Phi(u) + \lambda^2 \Phi(1) \geq C \|(u, \lambda)\|_{H_\Phi}^2.$$

The shape functions Φ_j are given by
$$
\Phi_j = \frac{1}{|S_j|} \int_{S_j} \Phi(u,v) \, \mathrm{d}v,
$$
where S_j is the support of Φ_j. This formulation is used in the literature [7].

We note that small perturbations in the input data (e.g., caused by the round-off error) or the
quadrature error will disturb the compatibility condition (2.17). It is well known that the compatibility
condition is necessary for the existence of the solution of the Neumann problem, and thus the
standard variational formulation of the Neumann problem is not well-posed without a constraint on
the perturbation. In contrast, the formulation (2.5) is well-posed without any constraint on
the perturbation of data. We further note that there is obvious freedom in the selection of Φ.

Discretization:
In order to discretize the variational problem (2.5) by a meshless method, we consider $V_h \subset H^1(\Omega)$, a one-parameter family of
finite dimensional spaces, given by
$$
V_h = \text{span} \{ \phi_j : j \in N_h \} ; N_h \text{ is an index set.}
$$

The shape functions $\{\phi_j(x)\}_{j \in N_h}$ are linearly independent. Moreover, ϕ_j's have compact support and (in a meshless method) their construction
either does not depend, or depends only minimally, on a mesh. We let $\omega_j \subset \Omega$ be the interior of the supp ϕ_j. We assume that ω_j is star-shaped with respect to a ball $\bar{B}_j \subset \omega_j$ and there exists a constant $C > 0$ such that
$$
\frac{\text{diam}(\omega_j)}{\text{diam}(B_j)} \geq C, \quad \forall j \in N_h.
$$

For the definition of star-shaped domains with respect to a ball, we refer to [7].

Often, a shape function $\phi_n(x) = \phi_n(x) \in \mathbb{R}^d$
and it is assumed that the particles are distinct i.e., $x_i \neq x_j$ if $i \neq j$. We note that when $\overline{\omega_j \cap \Gamma} = \emptyset$, then the associated particle $x_j \in \omega_j$. But when $\overline{\omega_j \cap \Gamma \neq \emptyset}$, then the associated particle x_j could be outside Ω. We also divide the set N_h into two sets, namely,
$$
\begin{align*}
N_h^0 &= \{ i \in N_h : \overline{\omega_i} \subset \Omega \}, \\
N_h^1 &= \{ i \in N_h : \overline{\omega_i \cap \Gamma} \neq \emptyset \}.
\end{align*}
$$

We note that $N_h = N_h^0 \cup N_h^1$ and $N_h^0 \cap N_h^1 = \emptyset$. We set $|N_h| = \text{card}(N_h)

We now make the following assumptions on the subspace V_h.

A1: (finite overlap) For $i \in N_h$, let S_i be the set of indices j such that $\omega_i \cap \omega_j \neq \emptyset$. There is a constant κ, independent of i and h, such that
$$
\text{card} S_i \leq \kappa.
$$

A2: There are positive constants C_i, C_1, C_2, independent of i and h, such that
$$
\| D^j \phi_i \|_{L^\infty(\Omega)} \leq C_j \kappa^j, \quad 0 \leq |\alpha| \leq q \quad \text{for some } q \geq 1,
$$
where $D^j \phi_i$ is the “area” of ω_i in \mathbb{R}^d and $|\overline{\omega_i} \cap \Gamma|$ is the
“length” of $|\overline{\omega_i} \cap \Gamma|$ in \mathbb{R}^{d-1}.

A3: There are positive constants C_1 and C_2, independent of h and i, such that
$$
C_1 \leq \frac{\text{diam} (\omega_i)}{h} \leq C_2.
$$

A4: There are positive constants C_1 and C_2, independent of h and i, such that
$$
\begin{align*}
C_1 &\| p \|^2_{L^2(\Omega)} \leq C_2 \sum_{i \in N_h} \| p \|^2_{L^2(\omega_i)}, \\
C_1 &\| p \|^2_{L^2(\Gamma)} \leq C_2 \| p \|^2_{L^2(\Gamma)}, \\
C_1 &\| p \|^2_{L^2(\omega_i)} \leq C_2 \sum_{j \in N_h} \| p \|^2_{L^2(\omega_j)}, \quad \forall i \in N_h.
\end{align*}
$$

for all $p = \sum_{i \in N_h} p_i \phi_i \in V_h$.

A5: The shape functions reproduce polynomials of degree k, i.e.,
$$
\sum_{j \in N_h} p(\overline{\omega_j}) \phi_j(x) = p(x), \quad \forall p \in \mathbb{P}_k(\Omega) \text{ and } x \in \Omega.
$$

where \mathbb{P}_k is the space of polynomials of degree k.
provided the function $v = 1 \in V_h$. Here the notation $A_h = B_h$ means that there are constants C_1, C_2, independent of h such that $C_1 \leq |A_h|/|B_h| \leq C_2$. It is clear from assumption A5 (take $p(x) = 1$ in (2.19)) that $1 \in V_h$ and therefore (ϕ_i^h) form a partition of unity. We mention that the particles $\{\phi_i^h\}$ are used in the construction of shape functions satisfying (2.19) (see [18]). We further note that it is possible to prove the inequalities (2.16)–(2.18) in certain situations for special distributions of the particles $\{\phi_i^h\}$; also see Remark 4.3 in [4]. These proofs require the assumption (2.15).

Examples of subspaces V_h satisfying these assumptions can be found in [2,17,20]. We mention that it is easy to construct smooth shape functions (ϕ_i^h), e.g., RKP shape functions with respect to a smooth weight function (see [19,17,18]). We assume that $\phi_i^h \in C^{d+1}(\Omega)$ for all $i \in N_h$.

In the rest of the paper, we will write $x^h_j, \alpha_i^h, \phi_i^h$ as x_j, α_i, ϕ_i, respectively, for notational simplicity, with the understanding that they depend on h.

We will use a Lagrange multiplier method to determine a unique approximate solution for problem (2.5). To this end, we define a linear functional Ψ on V_h by

$$
\Psi(v_h) = \frac{\Phi(1)}{|N_h|} \sum_{i \in N_h} v_i \quad \forall v_h = \sum_{i \in N_h} v_i \phi_i \in V_h.
$$

Ψ is different from Φ, but note that $\Psi(1) = \Phi(1)$. Also Ψ is a bounded linear functional since

$$
|\Psi(v_h)| \leq \frac{\Phi(1)}{|N_h|} \left(\sum_{i \in N_h} v_i^2 \right)^{\frac{1}{2}} \leq Ch^2 \sum_{i \in N_h} v_i^2 \leq C \|v_h\|_{L^2(\Omega)} - C \|v_h\|_{L^2(\Omega)},
$$

where the last inequality is obtained using (2.16) and (2.20). We consider

$$
V_p^h = \left\{ (v_h, \mu) \in V_h \times \mathbb{R} : \|v_h, \mu\|_{V_p^h} = \|v_h\|_{H^1(\Omega)} + |\Psi(v_h)|^2 + |\mu|^2 < \infty \right\}.
$$

V_p^h is a Hilbert space and we can show that there are constants C_1, C_2, independent of h, such that

$$
C_1 \|v_h, \mu\|_{V_p^h} \leq \|v_h\|_{H^1(\Omega)} + |\Psi(v_h)|^2 + |\mu|^2 \leq C_2 \|v_h, \mu\|_{V_p^h}, \quad \forall (v_h, \mu) \in V_p^h.
$$

Therefore from (2.4) we see that the norms $\|\cdot\|_{V_p^h}$ and $\|\cdot\|_{H^1(\Omega)}$ are equivalent on V_p^h and the associated constants are independent of h. We note that the linear functional Ψ is not well defined on $H^1(\Omega)$, but is well defined on V_h.

Meshless method:

A meshless method to approximate the solution of (2.5) is a Galerkin method

Find $(v_h, \lambda_h) \in V_p^h$ satisfying

$$
\mathcal{A}(v_h, \lambda_h; v, \mu) = L(v), \quad \forall (v, \mu) \in V_p^h,
$$

where

$$
\mathcal{A}(v_h, \lambda_h; v, \mu) \equiv B(v_h, v) + \lambda_h \Psi(v) + \mu \Psi(v_h).
$$

We will give a rationale for using Ψ (in place of Φ) in (2.23) later in Remark 3.1.

Let $z \in C(\overline{\Omega})$. We define $\mathcal{J}_h z$, called the V_h-interpolant of z, as

$$
\mathcal{J}_h z \equiv \sum_{i \in N_h} z(x_i) \phi_i(x).
$$

Strictly speaking, $\mathcal{J}_h z$ is a quasi-interpolant of z, since $\mathcal{J}_h z(x_i) = z(x_i)$. We further note that the function z has to be suitably extended outside Ω in order to define $\mathcal{J}_h z$, since some of the particles x_i may be outside Ω. The extension of z to define $\mathcal{J}_h z$ has been discussed in [3].

In the following result, we present the interpolation error estimate.

Lemma 2.2. Let $z \in W^{k+1,p}(\Omega) \cap C(\Omega), p = 2, \infty$. Then there exists a constant C, independent of z and h such that

$$
\|z - \mathcal{J}_h z\|_{W^{k+1,p}(\Omega)} \leq C h^{k+1-\gamma} \|z\|_{W^{k+1,p}(\Omega)}.
$$

The proof of this theorem can be found in [17,2].

Remark 2.6. It is important to note that the proof of Lemma 2.2 needs an additional assumption. We assume that for each $i \in N_h$, there is a ball B_i of diameter ρh such that

$$
\bigcup_{j \in B_i} \Omega_j \subset B_i,
$$

where $\rho \geq 1$ is independent of i. We further note that the proof also depends on the assumption A5, which in turn imposes certain restrictions on the distribution of the particles $\{x_i\}$, which we do not elaborate here.

To address the existence and uniqueness of the solution of the problem (2.23), we state the following result:

Lemma 2.3

(a) There is a constant $C > 0$, independent of h, such that

$$
|\mathcal{A}(w, v; (v, \mu))| \leq C \|w\|_{W^{k+1,p}(\Omega)} \|v\|_{W^k(\Omega)} \|\mu\|_{V_p^h},
$$

$$
\forall (w, v) \in V_h, (v, \mu) \in V_p^h.
$$

(b) There exists $C > 0$, independent of h, such that

$$
C \leq \inf_{(w, v) \in V_p^h} \sup_{(v, \mu) \in V_p^h} |\mathcal{A}(w, v; (v, \mu))|.
$$

(c) For any $(v, \mu) \in V_p^h$ satisfying $\|v\|_{V_p^h} \neq 0$,

$$
0 < \inf_{(w, v) \in V_p^h} \mathcal{A}(w, v; (v, \mu)).
$$

The proof of this result depends on the fact that V_h contains constants (because of assumption A5) and follows the same arguments used in the proof of Lemma 2.1.

Remark 2.7. Since V_h contains constants, by considering $v_h = 1$ in the variational problem (2.23) it is clear that $\lambda_h = 0$ and we can also show that the problem (2.23) is equivalent to

Find $u_h \in V_h$ such that

$$
B(u_h, v_h) = L(v_h) \quad \text{and} \quad \Psi(u_h) = 0, \quad \forall v_h \in V_h.
$$

We note that the constraint $\Psi(u_h) = 0$ gives a non-singular stiffness matrix (which will otherwise be singular). This feature, possibly with a different choice of Ψ, is always incorporated in a standard FEM code.

Now it is immediate from (2.9) and (2.26),

$$
B(u - u_h, v_h) = 0, \quad \forall v_h \in V_h
$$

and therefore,

$$
|u - u_h|_{W^k(\Omega)} \leq \inf_{v_h \in V_h} |u - v_h|_{W^k(\Omega)} \leq C h^k |u|_{H^k(\Omega)}.
$$

Thus u_h converges to u only in the “energy norm”, i.e., the H^1-norm. Moreover, using (2.25), we also obtain

$$
|u - \mathcal{J}_h u|_{W^k(\Omega)} \leq |u - u_h|_{W^k(\Omega)} + |u - \mathcal{J}_h u|_{W^k(\Omega)} \leq C h^k |u|_{H^k(\Omega)}.
$$

which will be used later in the paper.
3. Numerical integration in meshless method

To motivate the quadrature in the meshless method, we first look at the problem (2.23) in detail. We write \(u_0 \), the solution of (2.23), as \(u_0 = \sum_{i \in N_h} C_i \phi_i \). Then the problem (2.23) can be written as

\[
\sum_{j \in N_h} \gamma_{ij} + \lambda \Psi(\phi_i) + \frac{\mu \phi(1)}{|B_{ij}|} \sum_{j \in N_h} C_j = l_i, \quad \text{for } i \in N_h, \forall \mu \in \mathbb{R},
\]

where

\[
\gamma_{ij} = B(\phi_j, \phi_i) = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx - \int_{\partial \Omega} \nabla \phi_j \cdot \nabla \phi_i \, ds
\]

and

\[
l_i = L(\phi_i) = \int_{\Omega} f \phi_i \, dx + \int_{\partial \Omega} g \phi_i \, ds = \int_{\Omega} f \phi_i \, dx + \int_{\partial \Omega} g \phi_i \, ds,
\]

\[
= f_i + g_i.
\]

(3.1)

The integrals \(\gamma_{ij}, f_i, \) and \(g_i \) are computed using quadrature. We define

\[
\gamma_{ij}^c = \int_{\Omega} \phi_j \cdot \nabla \phi_i \, dx
\]

and

\[
l_i^c = \int_{\Omega} f \phi_i \, dx + \int_{\partial \Omega} g \phi_i \, ds \equiv f_i^c + g_i^c.
\]

(3.2)

(3.3)

where \(f \) represents the numerically computed integral \(f \). We note that the matrix \(\{ \gamma_{ij} \} \) is not symmetric, since

\[
\gamma_{ij} = \int_{\Omega} \nabla \phi_j \cdot \nabla \phi_i \, dx \neq \int_{\Omega} \nabla \phi_i \cdot \nabla \phi_j \, dx = \gamma_{ij}.
\]

We next note that for \(v = \sum_{i \in N_h} v_i \phi_i \) and \(w = \sum_{i \in N_h} w_i \phi_i \) in \(V_h \), we have

\[
B(v, w) = \sum_{i \in N_h} \gamma_{ij} v_i w_i,
\]

and

\[
L(v) = \sum_{i \in N_h} l_i v_i + \sum_{i \in N_h} g_i v_i.
\]

So we naturally define

\[
B'(v, w) = \sum_{i \in N_h} \gamma_{ij}^c v_i w_i
\]

and

\[
L'(v) = \sum_{i \in N_h} f_i^c v_i + \sum_{i \in N_h} g_i^c v_i.
\]

(3.4)

Under this definition, the form \(B'(\cdot, \cdot) \) is bilinear on \(V_h \times V_h \) and \(L'(\cdot) \) is linear on \(V_h \). Since \(\{ \gamma_{ij}^c \} \) is not symmetric, it is clear that \(B'(v, w) \) is also not symmetric. Moreover, it can be easily shown that

\[
\sum_{j \in N_h} \gamma_{ij}^c = 0, \quad \forall \, i \in N_h,
\]

(3.5)

i.e., the “row-sum” of the matrix \(\{ \gamma_{ij} \} \) is 0, which implies that \(B'(1, v) = 0, \forall \, v \in V_h \).

(3.6)

But, in general, the “column-sum” of \(\{ \gamma_{ij}^c \} \) is not 0 and there is \(v \in V_h \) such that \(B'(v, 1) \neq 0 \). We also observe that

\[
L'(1) = \sum_{i \in N_h} f_i^c + \sum_{i \in N_h} g_i^c \neq 0.
\]

(3.7)

It is important to note that several other approaches for performing numerical integration have been proposed in the literature to approximate \(\gamma_{ij} \). We mention some of them below:

(i) The domain \(\Omega \) is partitioned into small and appropriately selected subdomains such that each \(\Omega_0 \) and \(\Omega_0 \cap \Omega_0 \) are also unions of these subdomains [16]. Numerical integration is then performed on each of these subdomains. The choice of subdomains in this approach allows the numerical integration of only smooth functions. The computed stiffness matrix \(\{ \gamma_{ij} \} \) is also symmetric, but partitioning process could be ‘expensive’ when \(\Omega_0 \)'s are not simplices.

(ii) In a procedure proposed in [11,12,10], the domain \(\Omega \) is partitioned into subdomains such that each \(\Omega_0 \) and \(\Omega_0 \cap \Omega_0 \) are also unions of these subdomains. Moreover, these subdomains contain exactly one particle \(\chi \). The main feature of this procedure is that the numerical integration is performed only on the boundary of the subdomains. Also the matrix \(\{ \gamma_{ij} \} \) is symmetric. The effectiveness of this approach for the lowest order, i.e., when \(k = 1 \) in (2.19), was shown in [11,12]; the higher order methods, i.e., \(k \geq 2 \) in (2.19), were addressed in [10].

(iii) The element \(\gamma_{ij} \) of the stiffness matrix could be approximated by performing numerical integration on \(\Omega_0 \cap \Omega_0 \). This approach was used in [14,15], where the domains \(\Omega_0 \)'s were considered as spheres. Consequently, the domains \(\Omega_0 \cap \Omega_0 \) were “lens-shaped” and special quadrature formulae were developed to numerically integrate over such lens-shaped domains. The matrix \(\{ \gamma_{ij} \} \), obtained from this procedure, is symmetric, but the main drawback of is that the matrix \(\{ \gamma_{ij} \} \) does not satisfy the zero row sum condition (3.5).

(iv) Numerical integration on \(\Omega_0 \cap \Omega_0 \), together with a simple “correction”, to approximate \(\gamma_{ij} \) was suggested in [4]. This correction ensured the zero row sum condition (3.5) for the matrix \(\{ \gamma_{ij} \} \); the matrix was also symmetric. The mathematical analysis presented in this paper required a certain assumption on the discretization, which is not easy to check. Also the analysis is valid for shape functions satisfying \(k = 1 \) in (2.19); it could not be generalized for \(k \geq 2 \). We note that rigorous mathematical error analysis is not available for the procedures described in (i)–(iii). In this paper, we considered numerical integration on \(\Omega_0 \) (not on \(\Omega_0 \cap \Omega_0 \)) of the form (3.2) and (3.3) to approximate \(\gamma_{ij} \) and, unlike [4], our error analysis is valid for all \(k \geq 1 \) in (2.19).

The meshless method with quadrature to approximate the solution \(u \) of the problem (2.5) is given by

Find \((u^h, \lambda^h) \in V_h^s \) satisfying

\[
\mathcal{B}^h(u^h, \lambda^h; v, \mu) = L'(v), \quad \forall (v, \mu) \in V_h^s,
\]

(3.8)

where

\[
\mathcal{B}^h(w, v; v, \mu) = B'(w, v) + v \Psi'(v) + \mu \Psi(w)
\]

and \(B'(\cdot, \cdot) \) and \(L'(\cdot) \) are as defined in (3.4). We refer to \(u_0^h \) as the quadrature approximation to \(u \). It is clear from (3.7) that the compatibility condition is not satisfied.

Remark 3.1. We note that the main reason for using \(\Psi' \) in (2.23) and (3.8) instead of \(\Phi' \), is that the numerical approximation of the linear functional \(\Phi' \) is not required in (3.8).

We assume that the numerical quadrature satisfies the conditions described below:

\[
Q^2. \text{There exist positive constants } \eta \text{ and } \tau, \text{ small enough and independent of } l \text{ and } h, \text{ such that}
\]

\[
\left| \int_{\Omega_0} g \, dx - \int_{\Omega_0} g \, dx \right| \leq \eta \|g\|_{L^2(\Omega_0)} \quad \forall g \in L^2(\Omega_0)
\]

(3.9)

and

\[
\int_{\Omega_0} g \, dx = \int_{\Omega_0} g \, dx
\]

(3.10)
for a class of functions \(\varphi \in W^{m_s, \infty}(\omega) \) and \(\varphi \in W^{m_s, \infty}(\partial \omega) \cap \Gamma \) satisfying
\[
\|D^2 \varphi\|_{L^2(\omega)} \leq C(\text{diam}(\omega))^{-1} \|\varphi\|_{L^2(\omega) \cap \Gamma}, \quad |x| \leq m_1
\]
and
\[
\|D^2 \varphi\|_{L^2(\omega) \cap \Gamma} \leq C(\text{diam}(\omega))^{-1} \|\varphi\|_{L^2(\omega) \cap \Gamma}, \quad |x| \leq m_2,
\]
where \(C > 0 \) is independent of \(i \) and \(m_1, m_2 \geq 1 \) may depend on the numerical quadrature as well as on \(q \) in assumption A2.

QA2.
(a) There is a constant \(C > 0 \), independent of \(h \), such that
\[
\|\mathcal{A}_p(w, v; \nu, \mu)\|_{V_p}(w, v; \nu, \mu) \leq C((w, v)_{V_p}(w, v; \nu, \mu)), \quad \forall (w, v, \nu, \mu) \in V_p.
\]
(b) There exists \(C > 0 \), independent of \(h \), such that
\[
C < \inf \sup_{(w, v) \in V_p} \mathcal{A}_p(w, v; \nu, \mu) \| \| (w, v)_{V_p}(w, v; \nu, \mu).
\]
(c) For any \((w, v) \in V_p \) satisfying \(\| (w, v)_{V_p}(w, v; \nu, \mu) \neq 0, \quad 0 < \sup \mathcal{A}_p(w, v; \nu, \mu). \]

QA3. For each \(i \in \mathbb{N}_0 \), let \(G_i : \mathbb{C}^m(\bar{\omega}) \to \mathbb{R} \) be a linear functional given by
\[
G_i(v) = \int_{\omega_i} \nabla \cdot \nabla \phi_i dx + \int_{\omega_i} \Delta v \phi_i dx - \int_{\partial \omega_i} \nabla \nu \cdot \nu \phi_i ds,
\]
where \(\nu \) is the unit outward normal to \(\partial \omega_i \cap \Gamma \). We assume that
\[
G_i(p) = 0, \quad \forall p \in \mathbb{S}^k \quad \text{and} \quad \forall i \in \mathbb{N}_0,
\]
where \(\mathbb{S}^k \) is the space of polynomials of degree \(k \).

We first note that the assumption QA2, i.e., (3.14), (3.15), and (3.16) ensures that the problem (3.8) has a unique solution. In the following lemma, we show that (3.14)-(3.16) hold under a somewhat restricted condition on the parameter \(\eta \).

Lemma 3.1. Suppose there is a positive constant \(C \) such that the quadrature satisfies (3.10) with \(\eta < Ch \). Then \(\mathcal{A}_p(w, v; \nu, \mu) \) is bounded, and for \(C \) small enough, \(\mathcal{A}_p(w, v; \nu, \mu) \) satisfies the inf-sup conditions, i.e., (3.15) and (3.16) are satisfied.

Proof. Let \(w = \sum_{i \in \mathbb{N}_0} w_i \phi_i \), \(v = \sum_{i \in \mathbb{N}_0} v_i \phi_i \in V_p \).

We first estimate \(|B(w, v) - B'(w, v)| \).

Recalling the definition of \(\eta \) in (3.10) and using (3.6) and (2.18), we have for \(i \in \mathbb{N}_0 \),
\[
|B(w, \phi_i) - B'(w, \phi_i)| = \left| \int_{\omega_i} \nabla w \cdot \nabla \phi_i dx - \int_{\omega_i} \nabla w_i \cdot \nabla \phi_i dx \right|
\]
where we used (2.13) with \(|x| = 1 \). Therefore, squaring both sides of the above inequality and summing over \(i \in \mathbb{N}_0 \), we get
\[
\sum_{i \in \mathbb{N}_0} |B(w, \phi_i) - B'(w, \phi_i)|^2 \leq C \eta^2 h^{d-2} \sum_{i \in \mathbb{N}_0} |w_i|^2 \leq C \eta^2 h^{d-2} |w|^2.
\]
Thus, recalling that \(v = \sum_{i \in \mathbb{N}_0} v_i \phi_i \) and using (2.16), we get
\[
|B(w, v) - B'(w, v)| = \sum_{i \in \mathbb{N}_0} |v_i| |B(w, \phi_i) - B'(w, \phi_i)| \leq \left(\sum_{i \in \mathbb{N}_0} |v_i|^2 \right)^{1/2} \left(\sum_{i \in \mathbb{N}_0} |B(w, \phi_i) - B'(w, \phi_i)|^2 \right)^{1/2}
\]
\[
\leq C \eta h^{d-2} |w_{i_0}|^2 \|v\|_{V_p} \|w\|_{V_p}.
\]
We now prove the boundedness of \(\mathcal{A}_p \), i.e., (3.14). From the definition (3.9) of \(\mathcal{A}_p(w, v; \nu, \mu) \), we get
\[
\mathcal{A}_p(w, v; \nu, \mu) = \mathcal{A}_p(w, v; \mu) - |B(w, v) - B'(w, v)|.
\]
Therefore, using (3.20) and part (a) of Lemma 2.3, we get
\[
|\mathcal{A}_p(w, v; \nu, \mu)| \leq C_1 |(w, v)_{V_p}(w, v; \nu, \mu)| + C_2 \eta h^{-1} |w_{i_0}|^2 |v|_{V_p}^2
\]
\[
\leq C(1 + \eta h^{-1})(|w, v|_{V_p} + \|w\|_{V_p}^2).
\]
Thus by taking \(\eta \leq Ch \), we get (3.14).

We now prove the inf-sup condition (3.15). For a given \((w, v) \in V_p \), we choose \(v = v_0 + v \in V_p \) and \(\mu = -v + \Psi(v) \). It can be shown following the proof of (2.7) that
\[
\mathcal{A}_p(w, v; \nu, \mu) \geq C_1 |(w, v)_{V_p}(w, v; \nu, \mu)| + \|v\|_{V_p} \leq C((w, v)_{V_p}(w, v; \nu, \mu)),
\]
where \(\mathbb{S}^k \) is the space of polynomials of degree \(k \).

Therefore, from (3.21),
\[
|\mathcal{A}_p(w, v; \nu, \mu)| \geq C_1 |(w, v)_{V_p}(w, v; \nu, \mu)| + C_2 \eta h^{-1} |w_{i_0}|^2 |v|_{V_p}. \]

Since \(v = w + v_0 \), \(v \) could be written as
\[
\sum_{i \in \mathbb{N}_0} v_i \phi_i, \quad \text{where} \quad v_i = w_i + v_i.
\]

Therefore, from (2.16) and (2.20)
\[
\|v\|_{L^2}^2 \leq Ch^d \sum_{i \in \mathbb{N}_0} (w_i + v_i)^2 \leq Ch^d \sum_{i \in \mathbb{N}_0} (w_i^2 + v_i^2)
\]
\[
= Ch^d \sum_{i \in \mathbb{N}_0} w_i^2 + Ch^d \sum_{i \in \mathbb{N}_0} v_i^2 \leq C\|w\|_{L^2}^2 + v^2, \quad \forall \eta > 0.
\]

Using the above in (3.20), we get
\[
|B(w, v) - B'(w, v)| \leq C_1 \eta h^{-1} |w_{i_0}|^2 \|v\|_{V_p} \|w\|_{V_p} \|v\|_{V_p}^2.
\]

Therefore, from (3.23), we have
\[
\mathcal{A}_p(w, v; \nu, \mu) \geq C_1 (1 - C_2 \eta h^{-1}) |(w, v)_{V_p}|^2.
\]

Finally, considering \(\eta h^{-1} \) small enough such that \(C_1 - C_2 \eta h^{-1} \geq C > 0 \), we get
\[\mathbf{A}_n(W, v; \mu) \supseteq C\| (W, v) \|_{p}^2. \]

We have already seen from \((3.22)\) that
\[\| (v, \mu) \|_{p} \leq C\| (W, v) \|_{p}. \]

Thus we proved the inf–sup condition \((3.15)\). The proof of \((3.16)\) is similar to Lemma 2.1(c) and we do not provide it here. □

Remark 3.2. We note that Lemma 3.1 was proved under a restrictive condition on \(\eta \), namely, we required that \(\eta \leq Ch \), with \(C \) sufficiently small. Computations suggest that the condition \(\eta = O(h) \) is not necessary for the existence of a unique solution of the problem \((3.8)\) (\(\eta \) sufficiently small, independent of \(h \), is sufficient). We will further comment on the dependence of \(\eta \) on \(h \) later in this paper.

Remark 3.3. We will indicate in this remark that it is possible to choose a quadrature rule that yields a small \(\eta \) in \((3.10)\) in the assumption \(QA1\). We consider the set
\[\{ x \in \mathbb{R}^d : x = x/diam(\omega_0) \}. \]

Clearly, \(diam(\omega_0) = 1 \). For \(q \in W^{0,\infty}(\omega) \) satisfying \((3.12)\), we define \(\hat{q}(\zeta) = q(x) = q(x/diam(\omega_0)) \). Then it is easy to show that
\[\| \hat{q} \|_{L_{\infty}(\omega)} \leq \| q \|_{L_{\infty}(\omega_0)}, \quad \| D^2 \hat{q} \|_{L_{\infty}(\omega)} \leq C\| \hat{q} \|_{L_{\infty}(\omega)}, \quad | \zeta | \leq m_1. \]

We now consider a \(n \)-point quadrature rule on \(\omega_0 \) such that
\[\left| \int_{\omega_0} \hat{q}(\zeta) d\zeta - \int_{\omega_0} \hat{q}(\zeta) d\zeta \right| \leq \eta \| D^2 \hat{q} \|_{L_{\infty}(\omega)}, \quad | \zeta | = m_1, \]

where \(m_1 \) depends on the quadrature rule and \(\eta \) is inversely proportional to \(n \). For example, we may consider \(n_1 \)-point composite trapezoidal rule on \(\omega_0 \). It is well known that for \(n_1 \)-point composite trapezoidal rule, \((3.27)\) is true with \(m_1 = 2 \) and \(\tilde{n} = n_1^2/12 \). We may also consider an \(n_1 \)-point Gaussian quadrature rule, in which case we have \(\tilde{n} = O(n_1^{-m_2}) \). Now from \((3.26)\) and \((3.27)\), we have
\[\left| \int_{\omega_0} \hat{q}(\zeta) d\zeta - \int_{\omega_0} \hat{q}(\zeta) d\zeta \right| \leq \eta \| D^2 \hat{q} \|_{L_{\infty}(\omega)}, \quad | \zeta | = m_1, \]

where \(n = C \tilde{n} \) is inversely proportional to \(n \). Thus we can choose a quadrature rule (i.e., number of quadrature points \(n_1 \)) such that the associated \(\eta \) is small. Finally, we get \((3.10)\) by employing a standard scaling argument to the inequality \((3.28)\). Using similar arguments, we can show that we can choose a quadrature rule with a small \(\tau \) in \((3.13)\). We further note that the functions \(q \) and \(\vartheta \) (in \((3.10)\) and \((3.11)\) respectively) that we numerically integrate in this paper satisfy the conditions \((3.12)\) and \((3.13)\).

Remark 3.4. For each \(i \in N_h \), we define the linear functional \(G_i : H^2(\omega) \rightarrow \mathbb{R} \) as follows:
\[G_i(v) = \int_{\omega_0} \nabla v \cdot \nabla \phi_i dx + \int_{\omega_0} \Delta v \phi_i dx - \int_{\omega_0} \nabla v \cdot \bar{n} \phi_i ds. \]

It follows directly from Green’s formula that
\[G_i(p) = 0, \quad \forall \ p \in \mathbf{A}_p. \]

In fact, \((3.30)\) is true for any smooth function \(p \). The linear functional \(G_i \), defined in \((3.17)\), is obtained by using numerical integration on each integral in \(G_i \). In general, \((3.30)\) is not true if \(G_i \) is replaced by \(G_i \). In \((3.18)\) of assumption \(QA3 \), we require the exact same property to hold for \(G_i \).

Remark 3.5. It is instructive to illustrate the assumption \(QA3 \), i.e., \((3.18)\) in simpler situations. Let \(\Omega \subset \mathbb{R}^2 \) and \(k = 1 \). Considering \(p(x_1, x_2) = x_1 \) in \((3.18)\), we get
\[G_i(x_1) = \int_{\omega_0} \frac{\partial \psi}{\partial x_1} dx - \int_{\omega_0} n_1 \psi_1 ds = 0, \quad i \in N_h, \]

where \(n = (n_1, n_2) \). Similarly, considering \(p(x_1, x_2) = x_2 \) in \((3.18)\), we get
\[G_i(x_2) = \int_{\omega_0} \frac{\partial \psi}{\partial x_2} dx - \int_{\omega_0} n_2 \psi_2 ds = 0, \quad i \in N_h. \]

Thus for \(k = 1 \), the quadrature must satisfy the two conditions \((3.31)\) and \((3.32)\) for each \(i \in N_h \). In particular, the quadrature must satisfy
\[\int_{\omega_0} \nabla \phi_i dx = 0, \quad \forall i \in N_h. \]

We illustrate now \((3.18)\) for \(k = 2 \). Considering \(p(x_1, x_2) = x_1^2 \) in \((3.18)\), we get
\[G_i(x_1^2) = 2 \left[\int_{\omega_0} x_1 \frac{\partial \psi}{\partial x_1} dx + \int_{\omega_0} \psi_1 dx - \int_{\omega_0} n_1 \psi_1 ds \right] = 0, \quad i \in N_h, \]

Similarly, considering \(p(x_1, x_2) = x_2, x_3 \) and \(p(x_1, x_2) = x_2^2 \) in \((3.18)\), we get
\[G_i(x_1 x_2) = \int_{\omega_0} \left(x_2 \frac{\partial \psi}{\partial x_1} + x_1 \frac{\partial \psi}{\partial x_2} \right) dx - \int_{\omega_0} n_1 n_2 \phi_1 ds = 0, \]

and
\[G_i(x_2^2) = 2 \left[\int_{\omega_0} x_2 \frac{\partial \psi}{\partial x_2} dx + \int_{\omega_0} \psi_2 dx - \int_{\omega_0} n_2 \psi_2 ds \right] = 0, \quad i \in N_h. \]

for \(i \in N_h \). Thus for \(k = 2 \), the quadrature must satisfy \((3.34)\)–\((3.36)\) in addition to the assumptions \((3.31)\) and \((3.32)\). We will present quadrature schemes satisfying assumption \(QA3 \) later in this paper.

4. Effect of numerical integration

In this section, we will study the effect of quadrature on the meshless method. In particular, we will compare \(u - u_h \) with \(u - u_w \), where \(u, u_h, u_w \) are defined in problems \((2.5), (2.23)\) and \((3.8)\) respectively. We will assume \(u \) to be smooth; in particular, \(u \in C^k(\overline{D}) \). This assumption will allow us to present the main ideas simply and effectively. We will first prove the so called Strang lemma.

Lemma 4.1. Suppose \((u_h, \lambda_h)\) and \((u_w, \lambda_w)\) are the solutions of problems \((2.23)\) and \((3.8)\) respectively. Let \((w, \lambda) \in V^w \) be arbitrary. Then there exists \(C \), independent of \(h \), such that
\[\| (u_h - u_w, \lambda_h - \lambda_w) \|_{V^w} \leq C \sup_{(u, \lambda) \in V^w} \left[\| B (w, v) - B' (w, v) + [L (v) - L (v)] \|_V, \| (v, \mu) \|_V \right]. \]

Proof. We first note that \((u_h^* - w, \lambda_{w}^* - \lambda) \in V^w \). Therefore, from the inf–sup condition \((3.15)\) we get
\[\| (u_h - u_w, \lambda_h - \lambda) \|_{V^w} \leq C \sup_{(u, \lambda) \in V^w} \left[\| B (u_h^* - w, \lambda^*_{w} - \lambda; v, \mu) \|_V \right]. \]
where R_i is the remainder defined in (4.6). Since $T^k f_i u$ is a polynomial of degree k, we have $G_i(T_i^k f_i u) = G_i(T_i^k f_i u) = 0$ from (3.30) and (3.18) and therefore,

$$G_i(f_i u - G_i(f_i u)) = G_i(T_i^k f_i u + R_i) - G_i(T_i^k f_i u + R_i) = G_i(R_i) - G_i(R_i).$$

Let $i \in N^c_n$. Then, using (3.10) and (3.11), and the assumption A2,

$$|G_i(R_i) - G_i(R_i)| \leq \left| \int_{\Omega} \nabla R_i \cdot \nabla \phi_i dx - \int_{\Omega} \nabla R_i \cdot \nabla \phi_i dx \right| + \int_{\Omega} \Delta R_i \phi_i dx - \int_{\Omega} \Delta R_i \phi_i dx + \int_{\Omega} \nabla R_i \cdot \tilde{\phi}_i dx - \int_{\Omega} \nabla R_i \cdot \tilde{\phi}_i dx \leq \eta \|\phi_i\|_{L^2(\Omega)}^2 + \eta \|\Delta \phi_i\|_{L^2(\Omega)}^2 + \tau \|\phi_i\|_{L^2(\Omega)} \left\| \nabla R_i \cdot \tilde{\phi}_i \right\|_{L^2(\Omega)} + C\eta h^{-1} |R_i|_{W^{1,\infty}(\Omega)} + C\eta h^{-1} |R_i|_{W^{2,\infty}(\Omega)} \\
< C(\eta + \tau) h^{-1} \|u\|_{W^{k,\infty}(\Omega)}.$$

Thus from (4.8) and (4.9), we get the desired result.

We now prove the main result of this paper.

Theorem 4.1. Suppose the approximating subspace V_h and the numerical integration scheme satisfy conditions A1–A5 and QA1–QA3, respectively. Then for small η, there is a positive constant C, independent of u, η, τ, and h, such that

$$|u - u_h|_{V^l}^2 \leq C \left(h^k + (\eta + \tau) h^k + \eta h^{-1} \|u\|_{W^{k,\infty}(\Omega)} \right).$$

Proof. Let $f_i u$ be the V_n-interpolant of u. We note that $B(D_i v, 0)$ and recall that $B'(D_i v, 0)$ for an arbitrary constant D (see (3.8)). Then we substitute $(w, \lambda) = (f_i u, D_i \lambda)$ in Lemma 4.1 to get

$$|u - u_h|_{V^l}^2 \leq C \left(\|u\|_{W^{k,\infty}(\Omega)} \right)^2 \leq C \left[\|u_h\|_{V^l}^2 + \|\nabla u\|_{V^l}^2 \right].$$

We will now estimate the right-hand side of (4.10).

Since the solution u is smooth, we have for $i \in N_h$,

$$\int_{\Omega} f \phi_i dx = - \int_{\Omega} \Delta u \phi_i dx \leq - \int_{\Omega} \Delta(u - f_i u) \phi_i dx + \int_{\Omega} \Delta(f_i u - u) \phi_i dx \leq \int_{\Omega} \nabla u \cdot \tilde{\phi}_i dx$$

and

$$\int_{\Omega} \phi_i dx = \int_{\Omega} \nabla u \cdot \tilde{\phi}_i dx + \int_{\Omega} (u - f_i u) \cdot \tilde{\phi}_i dx.$$
where \(e_i \equiv u - \mathbf{s}_i u \). Likewise, repeating the argument leading to (4.11) with \(f \) replaced by \(j \), we get for \(i \in N_s
abla_j (\mathbf{s}_i u, \phi_i) - \Delta_j (\mathbf{s}_i u) \phi_j d\Gamma - \int_{\Gamma_i \cap \Gamma} \Delta_j (\mathbf{s}_i u) \phi_j d\Gamma \leq C(\eta + \tau) h^{d-1} \| u \|_{W^{1+d-1}(\Omega)} \), \(\forall i \in N_s \).

Now let \(i \in N_s' \), so \(\phi_i \equiv 0 \) and using (3.10), (3.23), and assumption A2 in (4.13), we have

\[
|B(\mathbf{s}_i u, \phi_i) - B(\mathbf{s}_i u, \phi_i) + L'(\phi_i) - L(\phi_i)| \leq C h^{d-1} \| u \|_{W^{1+d-1}(\Omega)} \] \(\forall i \in N_s' \).

We now estimate the second term of the RHS of (4.10). Let \(v = \sum_{i \in N_h} \phi_i \phi_i \) be an arbitrary element in \(V_h \). Then from (4.14), (4.15), (2.16), (2.17) and (2.20), and a trace-inequality, we have

\[
|\sum_{i \in N_h} v_i |B(\mathbf{s}_i u, \phi_i) - B(\mathbf{s}_i u, \phi_i) + L'(\phi_i) - L(\phi_i)\| | \leq C h^{d-1} \| u \|_{W^{1+d-1}(\Omega)}
\]

Finally, from (2.27) and (2.28),

\[
|u - u_i|^2 \leq C h^{d-1} \| u \|_{W^{1+d-1}(\Omega)}
\]

which is the desired result. \(\square \)

For \(k = 1 \), we only require the quadrature to satisfy a reduced form of QA3, namely, we assume that (3.18) of QA3 is satisfied only for \(i \in N_s' \).

Theorem 4.2. Suppose the approximating subspace \(V_h \) satisfies conditions A1-A5 with \(k = 1 \). We consider numerical integration scheme satisfying QA1-QA3, but (3.18) of QA3 is satisfied only for \(i \in N_s' \). Then for small \(\eta \), there is a constant \(C \), independent of \(u, \eta, \tau, \) and \(h \), such that

\[
|u - u_i|^2 \leq C h^{d-1} \| u \|_{W^{1+d-1}(\Omega)}
\]

The proof of this result can be obtained by slightly modifying the proof of Theorem 4.1; we do not provide the details here.

Remark 4.1. It is clear from Theorem 4.1 that we do not have optimal order of convergence, i.e., \(|u - u_i|^2 \leq O(h^{d-1}(h + \eta)) \). But if we consider \(\eta \ll C \), then we get

\[
|u - u_i|^2 = O(h^d).
\]

This means that if we increase the accuracy of the quadrature as \(h \) becomes smaller, we restore the optimal order of convergence. This effect of numerical integration in meshless method is very different from the effect of numerical integration in FEM.

5. Numerical results

In this section, we present computational data illuminating the results in Section 4 in one dimension. We will also develop numerical integration rules satisfying (3.18) of assumption QA3.

We consider the one dimensional version of the problem (2.1) with \(\Omega = (0, 1) \). Let \(u(x) = e^x - (e - 1) \), satisfying \(\Phi(u) = \int_0^1 u \ dx = 0 \), be the exact solution of (2.5) with \(L(v) = -e^x \int (x) v \ dx + e^x (v(1) - v(0)) \). To approximate this solution by the meshless method (2.23), we first construct a \(C^2 \) symmetric, RKP basic shape function \(\phi(x) \) with support \([-R, R] \), satisfying

\[
\sum_{j \in Z} \phi(x - j) = 1 \quad \mathrm{and} \quad \sum_{j \in Z} \phi(x - j) = x, \quad \forall x \in \mathbb{R},
\]

with \(R = 1.8 \) (see [2,18,19]). We then consider a natural number \(N > 1 \), and for \(h = 1/N \), we let

\[
N_i = \{ x_i = ih : i = -1, 0, 1, \ldots, N, N + 1 \}.
\]

For each \(x_i \in N_i \), we define the shape function

\[
\phi_i(x) \equiv \phi \left(\frac{x - x_i}{h} \right), \quad x \in \Omega = (0, 1).
\]

Then for \(i \in N_i \), \(\phi_i(x) = (x_i - i h) \cap \Omega \) and \(\Phi(u) = \int_0^1 u \ dx = 0 \). We note that for \(i = 2, 3, \ldots, N - 2 \), we have

\[
\phi_i(x) = \phi_i(x)
\]

produce polynomials of degree \(k \). This is precisely the condition (3.18) in [1].

We now present numerical experiments to illuminate the result in Theorem 4.2. We considered \(u = e^x \) for \(x \in (-1, 1) \) to obtain the approximate solution \(\phi(t) = \int_0^1 \phi(t) \cdot \eta(x) \, dx \) for \(\eta \). The function \(u \) was approximated by \(u_{\text{approx}} \), which is an example of the results obtained using p-point Gaussian quadrature. The error \(|u - u_{\text{approx}}| \) was measured in the standard Gaussian quadrature (symmetric) with \(p = 8, 16, \) and 32.

We observe from Table 1 that the error \(|u - u_{\text{approx}}| \) decreases as \(p \) increases. Moreover, for \(p = 16 \), we observe from Fig. 1 that \(|u - u_{\text{approx}}| = O(h) \) at the beginning, but "levels off" for smaller values of \(h \). For \(p = 32 \) the pattern is same, but the error is \(O(h) \) for larger values of \(h \). This pattern suggests that the quadrature rule does not satisfy the assumption (5.4); we will show that the error increases as \(h \) becomes smaller. We construct a quadrature rule on \((\alpha_i, \beta_i) \) such that the quadrature points are not symmetrically about the midpoint \(m \).

The Gauss quadrature rule \(Q^p_\nu(f) \) numerically integrates the relevant terms, e.g., \(\gamma^p_\nu \) and \(\tilde{I}_\nu^p \) (see (3.2) and (3.3)). We note that this approach did not approximate the boundary term in (3.3) in our \(1 - d \) example and so have \(\tau = 0 \).

We use \(p = 8, 16, \) and 32 in \(Q^p_\nu(f) \) and computed the seminorm \(|u - u_{\text{approx}}| \). We note that \(\eta \) decreases as \(p \) increases. We presented these results in Table 1. We also present the log-log graph of \(|u - u_{\text{approx}}| \) with respect to \(h \) in Fig. 1.

Table 1

<table>
<thead>
<tr>
<th>(h)</th>
<th>(p = 8)</th>
<th>(p = 16)</th>
<th>(p = 32)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{10})</td>
<td>1.3408E-02</td>
<td>3.4015E-03</td>
<td>3.3906E-03</td>
</tr>
<tr>
<td>(\frac{1}{20})</td>
<td>1.2856E-02</td>
<td>1.7655E-03</td>
<td>1.7426E-03</td>
</tr>
<tr>
<td>(\frac{1}{40})</td>
<td>1.2527E-02</td>
<td>9.3409E-04</td>
<td>8.8369E-04</td>
</tr>
<tr>
<td>(\frac{1}{80})</td>
<td>1.2364E-02</td>
<td>5.4747E-04</td>
<td>4.4516E-04</td>
</tr>
<tr>
<td>(\frac{1}{160})</td>
<td>1.2284E-02</td>
<td>3.9752E-04</td>
<td>2.2374E-04</td>
</tr>
<tr>
<td>(\frac{1}{320})</td>
<td>1.2244E-02</td>
<td>3.5257E-04</td>
<td>1.7854E-04</td>
</tr>
<tr>
<td>(\frac{1}{640})</td>
<td>1.2224E-02</td>
<td>3.4182E-04</td>
<td>5.7922E-05</td>
</tr>
<tr>
<td>(\frac{1}{1280})</td>
<td>1.2141E-02</td>
<td>3.3982E-04</td>
<td>3.1563E-05</td>
</tr>
</tbody>
</table>

The H"{o}lder seminorm of the error, \(|u - u_{\text{approx}}| \), is not \(O(h + \eta) \) when the underlying quadrature rule does not satisfy the assumption (5.4); we will show that the error decreases as \(h \) becomes smaller. We construct a quadrature rule on \((\alpha_i, \beta_i) \) such that the quadrature points are not symmetrically about the midpoint \(m \).

Consider the mapping \(h : [-1, 1] \rightarrow [-1, 1] \) given by

\[y = h(z) = z + 0.1(z^2 - 1). \]

Clearly,

\[h'(z) = 1 + 0.2z^2 > 0 \quad \forall z \in [-1, 1]. \]

Fig. 1. The loglog plot of \(|u - u_{\text{approx}}| \) with respect to \(h_{\text{approx}} \). The approximate solution obtained using p-point standard Gaussian quadrature (symmetric) with \(p = 8, 16, \) and 32.
Consider
\[I(g) = \int_{-1}^{1} g(y) dy = \int_{-1}^{1} g(h(z)) h'(z) dz \]
The integral on the right could be approximated by the standard \(p\)-point Gauss quadrature, given by
\[I(g) \approx \sum_{i=1}^{p} v_i g(h(\xi_i)) h'(\xi_i), \]
where \(\xi_i\) and \(v_i\) are standard Gauss points and Gauss weights respectively for the interval \((-1,1)\). This induces an associated \(p\)-point non-symmetric Gauss quadrature \(Q_{ns}(g)\) on \((-1,1)\) to approximate \(I(g)\) given by
\[Q_{ns}(g) = \sum_{i=1}^{p} v_i g_{ns}(\xi_i), \]
where
\[v_{ns} \equiv v_i h'(\xi_i), \quad z_{ns} \equiv h(\xi_i). \]
Clearly \(v_{ns}\) and \(z_{ns}\) are not symmetric. It is well known that the “precision” of standard \(p\)-point Gauss quadrature is \((2p-1)\). It can be easily shown that the “precision” of the associated \(p\)-point non-symmetric Gauss quadrature is \((p-1)\).

The \(p\)-point quadrature \(Q_{ns}(\cdot)\) induces the associated \(p\)-point non-symmetric Gauss quadrature \(Q^{\mu}_{ns}(\cdot)\) for the interval \((\alpha_i, \beta_i)\) given by
\[Q^{\mu}_{ns}(f) = \sum_{i=1}^{p} w_i^{\mu} f(z_i^{\mu}), \]
where
\[z_i^{\mu} = \frac{\beta_i - \alpha_i}{2} + \frac{\beta_i + \alpha_i}{2} \quad \text{and} \quad w_i^{\mu} = \frac{\beta_i - \alpha_i}{2} v_i^{\mu}. \]
We note that
\[Q^{\mu}_{ns}(\phi_i^{\mu}) = 0, \quad \text{for} \quad i \in N^{\mu}_i. \]
Thus \(Q^{\mu}_{ns}(\cdot)\) does not satisfy the assumption (5.4).

We computed \(u^{\mu}_{ns} - \) the solution of the meshless method (3.8) with numerical integration, where we used \(p\)-point \(Q^{\mu}_{ns}(\cdot)\) to compute the relevant integrals. We computed the error \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) for \(p = 8, 16, 32,\) and \(64\), and presented the data in Table 2. We also present the log-log graph of \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) with respect to \(h\) in Fig. 2.

We observe from Table 2 and Fig. 2 that for \(p = 8\), the error increases as \(h\) decreases and it “levels off” for smaller values of \(h\). For \(p = 16, 32,\) and \(64\), the error first decreases and then increases. The data suggest that \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) is not \(O(h+\eta)\).

We now consider a quadrature rule \(Q^{\mu}_{ns}(\cdot)\) for the interval \((\alpha_i, \beta_i)\) given by
\[Q^{\mu}_{ns}(f) = \sum_{i=1}^{p} w_i^{\mu} f(z_i^{\mu}), \]
where
\[z_i^{\mu} = \frac{\beta_i - \alpha_i}{2} + \frac{\beta_i + \alpha_i}{2} \quad \text{and} \quad w_i^{\mu} = \frac{\beta_i - \alpha_i}{2} v_i^{\mu}. \]
We again compute \(u^{\mu}_{ns} - \) the solution of the meshless method (3.8) with numerical integration, where we used \(p\)-point \(Q^{\mu}_{ns}(\cdot)\) to compute the relevant integrals. We present the error \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) and the values of \(h\) in Table 3. We also present the log-log graph of \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) with respect to \(h\) in Fig. 3.

We observe from Table 3 and Fig. 3 that the error \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) behaves differently than the error given in Table 2 and Fig. 2. Moreover, Fig. 3 suggests that \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\) = \(O(h + \eta)\), which illuminates the main result of this paper for \(k = 1\). Thus the data in Tables 2 and 3 strongly suggest that the assumption QA3 on the numerically quadrature is necessary.

Table 2

\(h\)	\(u - u^{\mu}_{ns}	_{	h^{\mu}	}\)						
\(\cdot	_{p=8}\)	\(\cdot	_{p=16}\)	\(\cdot	_{p=32}\)	\(\cdot	_{p=64}\)
1/10	1.1470E-01	4.0789E-03	3.3921E-03	3.3903E-03							
1/20	4.432E-01	3.4066E-03	1.7500E-03	1.7424E-03							
1/40	2.0611E-01	4.0666E-03	9.2577E-04	8.8352E-04							
1/160	5.3300E-01	1.6222E-02	1.1156E-03	2.2388E-04							
1/320	6.8533E-01	3.2202E-02	2.2158E-03	1.1615E-04							
1/640	7.7401E-01	6.6244E-02	4.4590E-03	8.2020E-05							
1/1280	8.2238E-01	1.3075E-01	8.9503E-04	1.2066E-04							

The \(H^2\)-seminorm of the error \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\), where \(u = e^{x} - (e - 1)\) and \(u^{\mu}_{ns}\) is the approximate solution obtained using “non-symmetric Gaussian quadrature”; the quadrature does not satisfy the assumption (5.4). The shape functions reproduce polynomial of degree \(k = 1\).

Table 3

\(h\)	\(u - u^{\mu}_{ns}	_{	h^{\mu}	}\)						
\(\cdot	_{8}\)	\(\cdot	_{16}\)	\(\cdot	_{32}\)	\(\cdot	_{64}\)
1/10	4.8825E-03	3.4363E-03	3.3907E-03	3.3903E-03							
1/20	3.4354E-03	1.8473E-03	1.7430E-03	1.7424E-03							
1/40	2.7885E-03	1.0985E-03	8.8443E-04	8.8390E-04							
1/80	2.5133E-03	8.1143E-04	4.4643E-04	4.4490E-04							
1/160	2.3944E-03	7.2840E-04	2.2604E-04	2.2327E-04							
1/320	2.3407E-03	7.1090E-04	1.1710E-04	1.1193E-04							
1/640	2.3154E-03	7.0752E-04	6.5600E-05	5.6057E-05							
1/1280	2.3031E-03	7.0793E-04	4.3932E-05	2.8048E-05							

The \(H^2\)-seminorm of the error \(|u - u^{\mu}_{ns}|_{|h^{\mu}|}\), where \(u(x) = e^{x} - (e - 1)\) and \(u^{\mu}_{ns}\) is the approximate solution obtained using corrected non-symmetric Gaussian quadrature. The shape functions reproduce polynomial of degree \(k = 1\).
6. Remarks and conclusions

In this paper, we have developed a mathematical framework to analyze the effect of numerical integration on meshless methods employing shape functions that reproduce polynomials of degree $k \geq 1$. The main results are summarized as follows:

- One of our main assumptions on the numerical quadrature is that it satisfy a form of Green's theorem, given in (3.18) in QA3. Using numerical integration rules that satisfy (3.18), we have proved error estimates.
- Numerical integration rules, satisfying the assumptions mentioned in this paper, automatically yield the so-called “zero row sum condition” (see (3.5)). This was one of the main assumptions that was used to obtain a similar error estimate in [4] for the case $k = 1$.
- Our results indicate that numerical integration with increased accuracy is required as $h \to 0$ to obtain the optimal order of convergence. The numerical results presented in this paper strongly support the results of this paper.

We have considered a scalar second order Neumann boundary value problem with constant coefficient in this paper. The results in this paper can be extended to a general coercive Neumann problem with non-constant coefficients.

References